Target Support Package™ 4
User’s Guide

For Use with TlI's C6000™

MATLAB
SIMULINK"

‘\The MathWorks™

Accelerating the pace of engineering and science

LN N

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Target Support Package™ User’s Guide
© COPYRIGHT 2002-2009 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

July 2002
January 2003
September 2003
June 2004
August 2004
October 2004
October 2004
December 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 1.0 (Release 13)
Revised for Version 1.1

Revised for Version 2.0 (Release 13SP1+)
Revised for Version 2.1 (Release 14)
Revised for Version 2.2

Revised for Version 2.2.1 (Release 14SP1)
Revised for Version 2.0 (Release 13SP2)
Revised for Version 2.3 (Release 14SP1+)
Revised for Version 2.3.1 (Release 14S5P2)
Revised for Version 2.4 (Release 14SP3)
Revised for Version 3.0 (Release 2006a)
Revised for Version 3.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.4 (Release 2008a)
Revised for Version 3.5 (Release 2008b)
Revised for Version 3.6 (Release 2009a)
Revised for Version 4.0 (Release 2009b)

Getting Started

Product Overview
Product Description

Using This Guide
Expected Background

Configuration Information

Setting Up and Configuring
System Requirements
Supported Hardware
Installing and Configuring Software

1-2

1-3
1-3

1-7
1-7
1-7
1-7

Targeting C6000 DSP Hardware

2|

Introduction to Targeting
OVervVIEW ..ttt i e i
About the Tutorials

TI C6000 and Code Composer StudioIDE

Using Code Composer Studio with Target Support Package
Softwarecciiiiina...
Supported Boards and Simulators

Typical Hardware Setup for a Development Board

Targeting Tutorial — Single Rate Application

OVEIVIEW ot ittt et e e

Building the Audio Reverberation Model
Adding C6713 DSK Blocks to Your Model

2-2
2-2

2-5

2-7
2-7
2-8
2-9

Configuring Target Support Package Blocks 2-11
Specifying Configuration Parameters for Your Model 2-15

Using the ¢6000lib Blockset 2-19
Schedulers and Timing 2-23
Timer-Based Versus Asynchronous Interrupt
Processing 2-23
Synchronous Scheduling 2-24
Asynchronous Scheduling 2-25
Asynchronous Scheduler Examples 2-26
Uses for Asynchronous Scheduling 2-29
Scheduling Considerationsooueeeeeeeen... 2-33

Setting Real-Time Workshop Options for C6000

Hardware 2-35
Setting Real-Time Workshop Pane Options 2-37
Accessing the Optionsciiiiiiinnneeeenan. 2-37
Target Selectioncciiiiiiieinnnn. 2-39
Documentation i 2-40
Build Process 2-40
Custom Storage Classciiiiiiinnnneennnnn. 2-40
Debug Pane Optionsccuiiiiiiiinnnn. 2-41
Optimization Pane Options 2-42
Embedded IDE Link Software Pane Options 2-44
Overrun Indicator and Software-Based Timer 2-48
Default Project Configuration — CustomMW 2-48

Model Reference and Target Support Package

Softwareiiiiii i e e 2-50
L0 =) T 1= 2-50
How Model Reference Works 2-50
Using Model Reference with Target Support Package
Softwareiiii e e e 2-52
Configuring Targets to Use Model Reference 2-53
Targeting Supported Boards 2-55
L0 =) T 1= 2-55
Typical Targeting Process, 2-56
Targeting the C6713 DSP Starter Kit 2-56

vi Contents

Configuring Your C6713DSK, 2-58

Confirming Your C6713DSK Installation 2-59
Simulink Models and Targeting 2-60
Creating Your Simulink Model for Targeting 2-60
Blocks to Avoid in Your Models 2-61

Targeting Tutorial I — A More Complex Application .. 2-63

L0 =) T 1= 2-63
Working and Build folders 2-64
Setting Simulation Program Parameters 2-65
Selecting the Target Configuration 2-66
Building and Running the Program 2-70
Contents of the Build folder 2-71
Targeting Your C6713 DSK and Other Hardware 2-73
L0 =) T 1= 2-73
Configuring Your C6713DSK 2-74
Confirming Your C6713 DSK Installation 2-74
Running Models on Your C6713 DSK 2-75

Creating Code Composer Studio Projects Without

Building 2-78
Introduction i 2-78
Creating Projects in CCS IDE Without Loading Files to
Your Target, 2-78
Targeting Custom Hardware 2-80
L0 =) T 1= 2-80
Typical Targeting Process, 2-82
Targeting a Custom Target 2-84
Sections Pane i 2-92
To Create Memory Maps for Targets 2-98

Using Target Support Package Software with Real-Time

Workshop® Embedded Coder Software 2-99
Introduction i 2-99
To Use the Real-Time Workshop® Embedded Coder Target

File ... e e 2-99

vii

Targeting with DSP/BIOS Options

3

Introducing DSP/BIOS 3-2
DSP/BIOS and Targeting Your TI C6000 DSP 3-4
Introduction 3-4
DSP/BIOS Configuration File 3-5
Memory Mappingoiiiiiiiiiiiiiaannnn. 3-6
Hardware Interrupt Vector Table 3-6
Linker Command File 3-6
Code Generation with DSP/BIOS 3-7
OVeIVIBW & vttt ettt ettt e e e 3-7
Generated Code Without and With DSP/BIOS 3-7
Profiling Generated Code 3-11
OVeIVIBW o ittt ettt et e e e 3-11
Profiling Subsystems 3-12
Details About Timing and Profiling 3-13
Profiling Multitasking Systems 3-14
The Profiling Report i, 3-16
Interrupts and Profiling 3-17
Reading Your Profile Report 3-18
Definitions of Report Entries 3-19
Profiling Your Generated Code 3-21
To Enable Profiling for Your Generated Code 3-22
To Create Atomic Subsystems for Profiling 3-22
Using DSP/BIOS with Your Target Application 3-25
Enabling DSP/BIOS When You Generate Code 3-25

Using the C62x and C64x DSP Libraries

q |

About the C62x and C64x DSP Libraries 4-2
CE2x DSP Librarycuiutininenneennneennnn. 4-2
C64x DSP Libraryccuvutinineennneennneennnn. 4-3

viii Contents

Supported Platforms 4-3
Characteristics Common to C62x and C64x Library

Blocks .. e e 4-4
Fixed-Point Numbers 4-5
Notationttt i e e 4-5
Signed Fixed-Point Numbers 4-6

Q Format Notationc.ciiiiiineenneennnn. 4-6
Building Models 4-10
L0 =) T 1= 4-10
Converting Data Types 4-10
Using Sources and Sinks, 4-11
Choosing Blocks to Optimize Code 4-11

Configuring Timing Parameters for CAN Blocks

5

Setting Timing Parameters 5-2
Accessing the Timing Parameters 5-2
Determining Timing Parameter Values 5-3
CAN Bit Timing Exampleo, 5-4

Block Reference

6

AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437) 6-2
C6416 DSK (c6416dsklib) 6-3
C6455 EVM (c6455evmlib) 6-4
C6713 DSK (c6713dsklib) 6-4

ix

X

Contents

C6747 EVM (c6747evmlib)

CAN Message Handling Blocks (canmsglib)

DM642 EVM (dm642evmlib)

DM6437 EVM (dm6437evmlib)

DM648 EVM (dm648evmlib)

DSP/BIOS (dspbioslib)

Host Communication (hostcommlib)

C62x DSP Library (tic62dsplib)
CONVELSIONS & vt ittt et ettt ettt
Filters e
Math and Matricesc.c0tiiiiiiiinnnnnn..
Transformsoiiitii e

C64x DSP Library (tic64dsplib)
CONVELSIONS & v vttt ettt ettt ettt
Filters e
Math and Matrices0iiiiiiinnnnnnn.
Transformsiiiii et

Scheduling (c6000dspcorelib)

Target Communication (targetcommlib)

Target Preferences (c6000tgtpreflib)

6-6

6-6

6-6

Blocks — Alphabetical List

7

Hardware Issues

Al

Configuring the D.signT DSK-91C111 to Use TCP/IP and

UDP . e e A-2
Requirements for the DM642 EVM A-3
Identifying Your DM642 EVM Board Version A-3
Installing Third-party Software A-3
Configuring the Target Preferences Block for Your DM642
EVM e e e A-4
Configuring the DM642 EVM Video ADC Block A-5

Installing and Configuring the Avnet Board Support

Libraryo i A-6
Preface e A-6
Installing the Avnet Board Support Library A-6
Setting the MATLAB Environment A-6
For Spectrum Digital DM6437EVM Users A-7
Verifying Your Installation A-8

Continuing Issues with Target Support Package

Software i e A-9
Setting the Clock Speed on the C6713 DSK A-9

Simulink Stop Block Works Differently When Not Using
DSP/BIOS Featurescciiiiiininennnn.. A-10
Installing Third-Party Target Support Packages A-10
Index

xi

xii Contents

Getting Started

® “Product Overview” on page 1-2
e “Using This Guide” on page 1-3
¢ “Configuration Information” on page 1-5

¢ “Setting Up and Configuring” on page 1-7

1 Getting Started

1-2

Product Overview

Product Description

Use Target Support Package™ to deploy generated code for real-time
execution on embedded microprocessors, microcontrollers, and DSPs. Using
Target Support Package, you can integrate peripheral devices with the
algorithms created using Embedded MATLAB™, Simulink®, and Stateflow®.
You can deploy the resulting executable onto embedded hardware for on-target
rapid prototyping, real-time performance analysis, and field production.

Using This Guide

Using This Guide

Expected Background

This document introduces you to using Target Support Package software
with Real-Time Workshop® software to develop digital signal processing
applications for the Texas Instruments™ C6000™ family of DSP development
hardware, such as the TI TMS320C6713 DSP Starter Kit. To get the most
out of this manual, you should be familiar with MATLAB® software and its
associated programs, such as Signal Processing Blockset™ software and
Simulink® software. We do not discuss details of digital signal processor
operations and applications, except to introduce concepts related to using
specific targets. For more information about digital signal processing, you
may find one or more of the following books helpful:

e McClellan, J. H., R. W. Schafer, and M. A. Yoder, DSP First: A Multimedia
Approach, Prentice Hall, 1998.

e Lapsley, P., J. Bier, A. Sholam, and E. A. Lee, DSP Processor Fundamentals
Architectures and Features, IEEE® Press, 1997.

® Oppenheim, A.V., R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989.

e Mitra, S. K., Digital Signal Processing — A Computer-Based Approach, The
McGraw-Hill Companies, Inc, 1998.

e Steiglitz, K, A Digital Signal Processing Primer, Addison-Wesley
Publishing Company, 1996.

Refer to the documentation for your TI boards for information about setting
them up and using them.

If You Are a New User

New users should read Chapter 1, “Getting Started”, which introduces the
Target Support Package environment—the required software and hardware,
installation requirements, and the board configuration settings that you need.
You will find descriptions of the blocks associated with the targeting software,
and an introduction to the range of digital signal processing applications of
which the target support package is capable.

1 Getting Started

If You Are an Experienced User

All users should read Chapter 2, “Targeting C6000 DSP Hardware” for
information and examples about using the new blocks and build software to
target your C6713 DSK. Two example models introduce the targeting software
and build files, and give you an idea of the range of applications supported
by the target support package. For C6713 DSK users, refer to “Configuring
Your C6713 DSK” on page 2-74for more information about installing and
using your C6713 DSK.

Configuration Information

Configuration Information

To determine whether Target Support Package software is installed on your
system, type this command at the MATLAB prompt.

€c60001ib

Entering that command displays the following C6000 block library:

=) Library: conoolib [_ (O] x|

File Edit Wiew Format Help

Texas Instruments C6000

Target Optimized
Prefarences Board Support Blocks
Host Target _

Communication Communication Scheduling

DSPRBIOS

If you do not see the listed libraries, or MATLAB software does not recognize
the command, install the target support package. Without the software,
you cannot use Simulink and Real-Time Workshop software to develop
applications targeted to the TI boards.

Note For up-to-date system requirements, visit
http://www.mathworks.com/products/target-package/requirements.html or go
to http://www.mathworks.com and select Products & Services, Product
List, Target Support Package, and System Requirements.

1-5

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com

1 Getting Started

1-6

To verify that the CCS IDE is installed on your machine, enter

ccsboardinfo

at the MATLAB command line. With the CCS IDE installed and configured,
the command line returns information about the boards that CCS IDE
recognizes on your machine, in a form similar to the following listing.

Board Board Proc Processor
Processor
Num Name Num Name
Type
0 C6x11 DSK (Texas Instruments) 0 CPU
TMS320C6x1x

If the command line does not return information about any boards, revisit
your CCS IDE installation and setup in your CCS IDE documentation.

As a final test, launch CCS IDE to ensure that it starts up successfully. For
the target support package to operate with this application, the CCS IDE
must be able to run on its own.

Setting Up and Configuring

Setting Up and Configuring

In this section...

“System Requirements” on page 1-7

“Supported Hardware” on page 1-7

“Installing and Configuring Software” on page 1-7

System Requirements

For detailed information about the software and hardware required to use
Target Support Package software, refer to the Target Support Package system
requirements areas on the MathWorks Web site:

¢ Requirements for Target Support Package:
www.mathworks.com/products/target-package/requirements.html

¢ Requirements for use with TI's C6000:
www.mathworks.com/products/target-package/ti-adaptor/

Supported Hardware

For a list of supported hardware, visit
http://www.mathworks.com/products/target-package/supportedio.html.

Installing and Configuring Software

Consult the “System Requirements” on page 1-7 for Target Support Package .
Only use supported versions of the software listed under “Third-Party Target
Support Package Requirements”. Uninstall unsupported versions before
installing supported versions. Doing so prevents errors that occur when the
Windows Environment Variables points to the unsupported versions.

The System Requirements describe where you can obtain the additional
third-party software, and when available, provide links for downloading that

software.

Install the software (only the supported versions!) in the following order:

http://www.mathworks.com/products/target-package/requirements.html
http://www.mathworks.com/products/target-package/ti-adaptor/
http://www.mathworks.com/products/target-package/supportedio.html

1 Getting Started

1-8

1 If needed, install the required and optional MathWorks software. (The
software license you purchase determines which products are available.)

2 If needed, install TI Code Composer Studio™ (CCS).
3 Install TI Service Release for CCS.
4 Install the TTI Code Generation Tools for you processor.

5 If you are using a Spectrum Digital board, download and install the
matching Spectrum Digital Driver.

6 Install additional board-specific packages in the order in which they appear
on the System Requirements web page.

Configure CCS as follows:

1 In CCS, open Help > About > Component Manager > Build tools

2 Open each target processor you will be using and enable the supported
version of Code Generation Tools.

3 Open Help > About > Component Manager > Build Tools > Target
Content (DSP/BIOS) .

4 Open each target processor you will be using and enable the supported
version of Texas Instruments DSP/BIOS.

5 In Component Manager, select Save the changes. Then exit and restart
CCS.

6 If you have a Spectrum Digital DM6437EVM board and or an Avnet
S3ADSP DM6437 board, refer to “Installing and Configuring the Avnet
Board Support Library” on page A-6.

7 Verify the installation by repeating the instructions in “Configuration
Information” on page 1-5.

Targeting C6000 DSP
Hardware

® “Introduction to Targeting” on page 2-2

e “TTI C6000 and Code Composer Studio IDE” on page 2-4

® “Targeting Tutorial — Single Rate Application” on page 2-7

e “Using the ¢6000lib Blockset” on page 2-19

® “Schedulers and Timing” on page 2-23

e “Setting Real-Time Workshop Options for C6000 Hardware” on page 2-35
e “Setting Real-Time Workshop Pane Options” on page 2-37

* “Model Reference and Target Support Package Software” on page 2-50

* “Targeting Supported Boards” on page 2-55

e “Simulink Models and Targeting” on page 2-60

e “Targeting Tutorial IT — A More Complex Application” on page 2-63

® “Targeting Your C6713 DSK and Other Hardware” on page 2-73

® “Creating Code Composer Studio Projects Without Building” on page 2-78
* “Targeting Custom Hardware” on page 2-80

e “Using Target Support Package Software with Real-Time Workshop®
Embedded Coder Software” on page 2-99

2 Targeting C6000™ DSP Hardware

Introduction to Targeting

In this section...

“Overview” on page 2-2

“About the Tutorials” on page 2-2

Overview

The Target Support Package software lets you use Real-Time Workshop
software to generate a C language real-time implementation of your Simulink
model. You can compile, link, download, and execute the generated code on the
C6713 DSP Starter Kit (DSK). The target support package is ideal for rapid
prototyping and developing embedded systems applications for C6713 digital
signal processors. The target support package focuses on developing real-time
digital signal processing (DSP) applications for C6000 hardware. Additional
hardware that we support is listed in Appendix A, “Hardware Issues”.

Although the tutorials in this chapter focus on the C6713 DSK, the techniques
and processes apply to any supported hardware, with minor adjustments for
the processor involved.

This chapter describes how to use the target support package to create and
execute applications on Texas Instruments C6000 development boards. To
use the targeting software, you should be familiar with using Simulink
software to create models and with the basic concepts of Real-Time Workshop
software automatic code generation. To read more about Real-Time Workshop
software, refer to your Real-Time Workshop documentation.

About the Tutorials

In most cases, this chapter deals with the C6713 DSK targets. Fortunately,
all members of the C6000 family of processors that we support work in

a manner similar to the C6713 DSK. While you review the contents of this
chapter, and follow the tutorials, recall that the concepts and techniques or
development processes apply, with a few adjustments, to all supported C6000
processors and boards.

Introduction to Targeting

Later sections discuss the Real-Time Workshop® Embedded Coder™ software
and targeting custom hardware.

Tip To make your figure easier to read, use easily distinguishable colors
and line styles.

2-3

2 Targeting C6000™ DSP Hardware

Tl C6000 and Code Composer Studio IDE

In this section...

“Using Code Composer Studio with Target Support Package Software” on
page 2-4

“Supported Boards and Simulators” on page 2-5

“Typical Hardware Setup for a Development Board” on page 2-5

Using Code Composer Studio with Target Support
Package Software

Texas Instruments (TI) markets a complete set of software tools to use when
you develop applications for your C6000 hardware boards. This section
provides a brief example of how Target Support Package software uses Code
Composer Studio (CCS) Integrated Development Environment (IDE) with the
Real-Time Workshop software and the ¢6000lib blockset.

Executing code generated from Real-Time Workshop software on a particular
target in real time requires that Real-Time Workshop software generate
target code that is tailored to the specific hardware target. Target-specific
code includes I/0 device drivers and an interrupt service routine (ISR). Since
these device drivers and ISRs are specific to particular hardware targets,
you must ensure that the target-specific components are compatible with
the target hardware.

To allow you to build an executable, TT C6000 uses the MATLAB links in
Embedded IDE Link™ software to invoke the code building process within the
CCS IDE. After you download your executable to your target and run it, the
code runs wholly on the target; you can access the running process only from
the CCS IDE debugging tools. Otherwise the running process is not accessible.

Used in combination with your target support package and Real-Time
Workshop software, TI products provide an integrated development
environment that, once installed, needs no additional coding.

TI C6000™ and Code Composer Studio™ IDE

Supported Boards and Simulators

Using the C6000 target provided by Target Support Package software, you
can generate code to run on a range of boards, both evaluation modules and
DSP starter Kkits.

Refer to Appendix A, “Hardware Issues” for the latest information about the
hardware supported by the target support package.

About Simulators

The CCS IDE offers simulators for the C6000 processors in the CCS IDE
Setup utility. Much of your model and algorithm development efforts work
with the simulators, such as code generation. And, since the target support
package provides a software-based scheduler, your models and generated code
run on the simulators just as they do on your hardware. For more information
about the simulators in CCS IDE, refer to your CCS online help system.

When you set up a simulator, match the processor on your target exactly to
simulate your target hardware. For example, to target a C6713DSK board,
your simulator must contain a C6713 processor, not just a C6xxx simulator.
Simulators must match the target processor because the codecs on the board
are not the same and the simulator needs to identify the correct codec.
Correctly matching your simulator to your hardware ensures that the memory
maps and registers match those of your intended target signal processor.

In general, use the device cycle accurate simulators provided by CCS Setup
to simulate your processor.

Typical Hardware Setup for a Development Board

The following block diagram represents typical inputs and output for a C6713
DSK development board.

2 Targeting C6000™ DSP Hardware

Microphone Ta Mic In Oscilloscope
From Line Out
To Line In
Signal Left Right
Generator C6711 DSK Speaker Speaker

After installing a supported development board, start MATLAB software.
At the command prompt, type ¢60001ib. This opens a Simulink blockset
named c6000lib that includes libraries that contain blocks predefined for
C6000 input and output devices.

The board-based block library for the C6713 DSK contains these blocks:

e ADC block
DAC block

DIP Switch block (optional, refer to the reference page for the DIP Switch
block for your target)

LED block
Reset block

Blocks from these libraries are associated with your boards and hardware.
As needed, add the devices to your model. If you choose not to include either
an ADC or DAC block in your model (they are available in the target specific
libraries), the target support package provides a timer that produces the
interrupts required for timing and running your model, either on your
hardware target or on a simulator.

Targeting Tutorial — Single Rate Application

Targeting Tutorial — Single Rate Application

In this section...

“Overview” on page 2-7

“Building the Audio Reverberation Model” on page 2-8
“Adding C6713 DSK Blocks to Your Model” on page 2-9
“Configuring Target Support Package Blocks” on page 2-11

“Specifying Configuration Parameters for Your Model” on page 2-15

Overview

In this tutorial you create and build a model that simulates audio
reverberation applied to an input signal. Reverberation is similar to the echo
effect you can hear when you shout across an open valley or canyon, or in

a large empty room.

You can choose to create the Simulink model for this tutorial from blocks in
Signal Processing Blockset software and Simulink block libraries, or you can
find the model in Target Support Package demos. For this example, you see
the model as it appears in the demonstration program. The demonstration
model name i1s c6713dskafxr.mdl as shown in the next figure. Open this
model by entering c6713dskafxr at the MATLAB prompt.

To run this model you need a microphone connected to the Mic In connector
on your C6713 DSK, and speakers and an oscilloscope connected to the
Line Out connector on your C6713 DSK. To test the model, speak into the
microphone and listen to the output from the speakers. You can observe the
output on the oscilloscope as well.

To download and run your model on your C6713 DSK, complete the following
tasks:

1 Use Simulink blocks, Signal Processing Blockset software blocks, and
blocks from other blocksets to create your model application.

2 Add Target Support Package blocks that let your signal sources and output
devices communicate with your C6713 DSK—the C6713 DSK ADC and

2 Targeting C6000™ DSP Hardware

C6713 DSK DAC blocks that you find in Target Support Package ¢6000lib
blockset.

3 Add the C6713DSK target preferences block from the Target Preferences
library to your model. Verify and set the block parameters for your
hardware. In most cases, the default settings work fine.

If you are using a C6713 simulator target, select Simulator on the Board
info pane of the target preferences block.

4 Set the configuration parameters for your model, including
® Solver parameters such as simulation start and solver options

® Real-Time Workshop software options such as target configuration and
target compiler selection

5 Build your model to the selected target.

6 Test your model running on the target by changing the input to the target
and observing the output from the target.

Your target for this tutorial is your C6713 DSK installed on your PC. Be sure
to configure and test your board as directed in “Configuring Your C6713DSK”
on page 2-58 in this guide before continuing this tutorial.

Building the Audio Reverberation Model

To build the model for audio reverberation, follow these steps:
1 Start Simulink.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset software blocks to
create the following model.

Targeting Tutorial — Single Rate Application

Feedback Gain

—2400
z

Integer Delay Delay Mix

Look for the Integer Delay block in the Signal Operations library of the
Signal Processing Blockset software. You do not need to add the input and
output signal lines at this time. When you add the C6713 DSK blocks in
the next section, you add the input and output to the sum blocks.

4 Save your model with a suitable name before continuing.

Adding €C6713 DSK Blocks to Your Model
So that you can send signals to your C6713 DSK and get signals back from the

board, Target Support Package software includes a block library containing
five blocks designed to work with the codec on your C6713 DSK:

e Input block (C6713 DSK ADC)

e Qutput block (C6713 DSK DAC)

¢ Light emitting diode block (C6713 DSK LED)

® Software reset block (Reset C6713 DSK)

¢ DIP switch block (C6713 DSK DIP Switch)

Entering c6713dsklib at the MATLAB prompt opens this window showing

the library blocks. This block library is included in Target Support Package
€60001ib blockset in the Simulink Library browser.

2-9

2 Targeting C6000™ DSP Hardware

2-10

[C]Library: c6713dsklib N [=] |
File Edit Wiew Formab Help
C6713 DSK
Board Support Library
Line In
CE713 DSK =3 CB?;ECDSK
ADC
ADC LA
CE713 D5k
LEL
LELD Reszat
CE712 DK |
CIF Switch
Switch

The C6713 DSK ADC and C6713 DSK DAC blocks generate code that
configures the codec on your C6713 DSK to accept input signals from the input
connectors on the board, and send the model output to the output connector
on the board. Essentially, the C6713 DSK ADC and C6713 DSK DAC blocks
add driver software that controls the behavior of the codec for your model.

To add C6713 DSK target blocks to your model, follow these steps:

1 Double-click Target Support Package software in the Simulink Library
browser to open the ¢6000lib blockset.

2 Click the library C6713 DSK Board Support to see the blocks available
for your C6713 DSK.

3 Drag and drop C6713 DSK ADC and C6713 DSK DAC blocks to your model
as shown in the figure.

Targeting Tutorial — Single Rate Application

C6713 DSK
Feedback Gain
Mic In
6713 DSK ;1800
ADC
ADC Integer Delay

Delay Mix

4 Connect new signal lines as shown in the figure.

5 Finally, from the TI C6000 Target Preferences block library, add the

Line Out
C6713 DSK
DAC

DAC

C6713DSK Target Preferences block to the model. Notice that it is not
connected to any other block in the model.

Configuring Target Support Package Blocks

To configure Target Support Package blocks in your model, follow these steps:

1 Click the C6713 DSK ADC block to select it.

2 Select Block Parameters from the Simulink Edit menu.

3 Set the following parameters for the block:

Clear the Stereo check box.

Select the +20 dB mic gain boost check box.
From the list, set Sample rate to 8000.

Set Codec data format to 16-bit linear.

For Output data type, select Double from the list.
Set Scaling to Normalize.

Set Source gain to 0.0.

Enter 64 for Samples per frame.

2-11

2 Targeting C6000™ DSP Hardware

Include a signal path directly from the input to the output so you can
display both the input signal and the modified output signal on the
oscilloscope for comparison.

4 For C6713 DSK ADC source, select Mic In.
5 Click OK to close the C6713 DSK ADC dialog box.

6 Now set the options for the C6713 DSK DAC block.
* Set Codec data format to 16-bit linear.
® Set Scaling to Normalize.
e For DAC attenuation, enter 0.0.

¢ Set Overflow mode to Saturate.
7 Click OK to close the dialog box.
8 Click the C6713DSK Target Preferences block.
9 Select Block Parameters from the Simulink Edit menu.

10 Verify the parameter settings for the C6713 DSK target. The figures below
show the proper values.

2-12

Targeting Tutorial — Single Rate Application

Target Preferences C6713DSK

571305K
CET13 - Edt ...

25
|

preics

Initialize functions
Terminate functions

F2812 eZdsp

Board info Settings

2-13

2 Targeting C6000™ DSP Hardware

Target Preferences C6713DSK

e

e

cooe 30
J Monrer |

Memory Settings

2-14

Targeting Tutorial — Single Rate Application

) Target Preferences'C6713DSK

DEREIOS |

Boardlnfol Memary |

=101

Memoary placement of default sections

Default sections

T ciata =
Section deszcription. € code

Memary placement of custom sections

Custom ections list

Flacement

Placement

i _istambaft A -
SDRAM
Remove |
El

rame I.mw_isrambuff

Cortterts: IAny 'l =
Aﬂributes:l

0K I Apply | Cancel Help

Section Settings

You have completed the model. Now configure the Real-Time Workshop
software options to build and download your new model to your C6713 DSK.

Specifying Configuration Parameters for Your Model

The following sections describe how to build and run real-time digital signal
processing models on your C6713 DSK. Running a model on the target starts
with configuring and building your model from the Configuration Parameters

dialog box in Simulink software.

Setting Simulink Configuration Parameters

After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration

parameters for the model:

2-15

2 Targeting C6000™ DSP Hardware

2-16

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Target Support
Package software.

® Set Start time to 0.0 and Stop time to inf (model runs without
stopping). Generated code does not honor this setting if you set a stop
time. Set this to inf for completeness.

¢ Under Solver options, select the Fixed-step and Discrete settings
from the lists

* Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Target Build Options

You can configure Real-Time Workshop software to generate and build code
that is appropriate for your hardware target. Follow these steps to set the
Real-Time Workshop options to target your C6713 DSK:

1 Open the Configuration Parameters dialog box by entering Ctrl+E
or by selecting the Simulation menu item and then Configuration
Parameters.

2 From the Select tree, choose Real-Time Workshop.

3 Verify that the system target file is set to ceslink_grt.tle. If needed, click
Browse and select ceslink_grt.tle.

4 From the Select tree, choose Embedded IDE Link.

Targeting Tutorial — Single Rate Application

5 Among the Runtime Options, set Build action to Build_and_execute,
and set Interrupt overrun notification method to Print_message.

6 Among the Project Options, keep the default settings.
7 Among the Code Generation options, clear Profile real-time execution.

8 Among the Link Automation options, verify that Export IDE link
handle to base workspace is selected and that IDE link handle name
has a name (e.g., CCS_Obj).

9 From the Select tree, choose Hardware Implementation.

10 Verify that Byte ordering is Little endian.

When you have completed these steps, you have configured the Real-Time
Workshop options for the C6713 DSK target. Some Real-Time Workshop
categories on the Select tree, such as Comments, Symbols, and
Optimization, do not require configuration. The default values for the
options in these categories are already correct for your new model. For
other models, you may want to set the options in these categories to provide
information during the build and to run TLC debugging when you generate
code.

Building and Executing Your Model on Your C6713 DSK

After you set the configuration parameters and configure Real-Time Workshop
software to create the files you need, you direct Real-Time Workshop software
to build, download, and run your model executable on your target:

1 Change the category to Real-Time Workshop on the Configuration
Parameters dialog box.

2 Clear Generate code only and click Build to generate and build an
executable file targeted to your C6713 DSK.

When you click Build with Build_and_execute selected for Build action,
the automatic build process creates an executable file that can be run by
the C6713 DSP on your C6713 DSK, and then downloads the executable
file to the target and runs the file.

2-17

2 Targeting C6000™ DSP Hardware

2-18

3 To stop model execution, click the Reset C6713 DSK block or use the
Halt option in CCS IDE. You could type halt from the MATLAB command
prompt as well.

Testing Your Audio Reverb Model

With your model running on your C6713 DSK, speak into the microphone
you connected to the board. The model should generate a reverberation
effect out of the speakers, delaying and echoing the words you speak into the
mike. If you built the model yourself, rather than using the supplied model
c6713dskafxr, try running the demonstration model to compare the results.

Using the c6000lib Blockset

Using the ¢6000lib Blockset

The ¢c60001ib blockset contains the block libraries described in the following

table.

Library

Descriptions

Texas Instruments C6000 (c6000lib)

Contains: Target Preferences (c6000tgtpreflib),

Board Support (c6000boardsupportlib), Optimized
Blocks (¢60000ptimizedblks), Host Communication
(hostcommlib), Target Communication (targetcommlib),
Scheduling (¢c6000dspcorelib), DSP/BIOS (dspbioslib)

“Target Preferences
(c6000tgtpreflib)” on page 6-15

Configures models for specific targets or custom C6000
hardware.

Board Support
(c6000boardsupportlib)

Contains: C6416 DSK (c6416dsklib), C6713 DSK

Board Support (c6713dsklib), DM642 EVM Board
Support (dm642evmlib), Avnet Spartan-3A DSP
DaVinci Evaluation Platform Board Support
(avnet_s3adsp_dm6437), C6455 EVM (c6455evmlib),
DM648 EVM Board Support (dm648evmlib), C6747 EVM
Board Support (c6747evmlib)

“C6416 DSK (c6416dsklib)” on page
6-3

Configures C6416 DSK peripherals .

“C6713 DSK (c6713dsklib)” on page
6-4

Configures C6713 DSK peripherals .

“DM642 EVM (dm642evmlib)” on
page 6-6

Configures DM642 EVM peripherals and video capture.

“DM6437 EVM (dm6437evmlib)” on
page 6-6

Configures DM6437 EVM peripherals and video capture.

“AVNET S3ADSP DM6437
(avnet_s3adsp_dm6437)” on page 6-2

Configures Avnet Spartan-3A DSP DaVinci Evaluation
Platform Board peripherals and video capture.

“C6455 EVM (c6455evmlib)” on page
6-4

Configures SRIO peripherals on the C6455 EVM.

“DM648 EVM (dm648evmlib)” on
page 6-8

Configures DM648 EVM peripherals and video capture.

2-19

2 Targeting C6000™ DSP Hardware

2-20

Library

Descriptions

“C6747 EVM (c6747evmlib)” on page
6-5

Configures C6747 EVM peripherals.

Optimized Blocks
(c60000ptimizedblks)

Contains C62x DSP (tic62dsplib) and C64x DSP Library
(tic64dsplib)

“C62x DSP Library (tic62dsplib)” on
page 6-9

Provides C62x-optimized algorithms such as filtering and
matrix manipulation.

“C64x DSP Library (tic64dsplib)” on
page 6-11

Provides C64x-optimized algorithms such as filtering and
matrix manipulation.

“Host Communication
(hostcommlib)” on page 6-9

Includes blocks for host-side UDP communications and
byte manipulation.

“Target Communication
(targetcommlib)” on page 6-14

Provides UDP and TCP/IP communications capabilities.
Includes byte manipulation blocks.

“Scheduling (c6000dspcorelib)” on
page 6-14

Manages memory and task scheduling on C6000-based
targets.

“DSP/BIOS (dspbioslib)” on page 6-8

Provides scheduling management using DSP/BIOS.

Similarities in the C6000 boards result in the ADC, DAC, DIP Switch, LED,
and Reset blocks for the C6000-based boards being almost identical. Each
section about a block, such as the ADC block, presents all possible options
for the block, noting when an option applies only to a board-specific version

of the ADC block.

Using the c6000lib Blockset

The ¢60001ib blockset, below, displays all of the block libraries in the Target
Support Package software. For a comprehensive list of the blocks in each
library, consult the Chapter 6, “Block Reference” topic.

_Io/x]

File Edit Wew Format Help

Texas Instruments C6000

Target Optimized
Preferences Board Support e
Hast Target :
Communication Communication Sl
DEP/BIOS

In addition to the ¢6000lib, your can also use blocks from the
idelinklib_common library.

2-21

2 Targeting C6000™ DSP Hardware

2-22

ﬂ Library: idelinklib_common

File Edit Wiew Format

Help

=13l x|

Memaory Allocate

Memaory Allocate

= dst

Memory Copy

Memory Copy

Blods for use with ADI VisuslDSF++, GHS MULTI,
and Tl Code Composer Studic

lgle Task

fllp

Idle Task

Schedulers and Timing

Schedulers and Timing

In this section...

“Timer-Based Versus Asynchronous Interrupt Processing” on page 2-23
“Synchronous Scheduling” on page 2-24

“Asynchronous Scheduling” on page 2-25

“Asynchronous Scheduler Examples” on page 2-26

“Uses for Asynchronous Scheduling” on page 2-29

“Scheduling Considerations” on page 2-33

Timer-Based Versus Asynchronous Interrupt
Processing

Code generated for periodic tasks, both single- and multitasking, runs out of
the context of a timer interrupt. The generated code that represents model
blocks for periodic tasks runs periodically, clocked by the periodic interrupt
whose period is equal to the base sample time of the model. This description
of scheduling and timing applies both to generated code operation that
incorporates DSP/BIOS real-time operating system (RTOS) and basic code
generation mode where DSP/BIOS RTOS is not included.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time O.

This execution scheduling scheme is not flexible enough for some systems,
such as control and communication systems that must respond to
asynchronous events in real time. Such systems may need to handle a variety
of hardware interrupts in an asynchronous, or aperiodic, fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

2-23

2 Targeting C6000™ DSP Hardware

2-24

¢ [f your application processes hardware interrupts asynchronously, add
the appropriate asynchronous scheduling blocks from the Target Support
Package library to your model, listed here.

Blocks in the DSP/BIOS (dspbioslib) library

= Hardware Interrupt — Create interrupt service routine on C6000
hardware target.

= Task — Create task that runs as separate DSP/BIOS thread.

= Triggered Task — Create asynchronously triggered task.
Blocks in the Scheduling (c6000dspcorelib) library

= Block Processing — Repeat user-specified operation on submatrices of
input matrix, using internal memory of DSP for increased efficiency.

= CPU timer — Generate interrupt service routine.

= EDMA — Configure EDMA Controller on C6000 processor.
Blocks in the Embedded IDE Link library for Texas Instruments Code
Composer Studio (idelinklib_ticcs)

= (6000 Hardware Interrupt — Generate interrupt service routine. Same
as the DSP/BIOS interrupt block.
Blocks in the Embedded IDE Link Common library (idelinklib_common)

= Idle Task — Create free-running background task

e [If your application does not service asynchronous interrupts, your model
should include only the algorithm and device driver blocks that specify
the periodic sample times. Generating code from a model like this
automatically enables and manages a timer interrupt. The periodic timer
interrupt clocks the entire model.

Synchronous Scheduling

For code that runs synchronously in the context of the timer interrupt, each
iteration of the model runs after an interrupt has been posted and serviced
by an interrupt service routine (ISR). The code generated for Target Support
Package software uses Timer 1 in DSP/BIOS mode and bare-board mode.
Timer 1 1s configured so that the base rate sample time for the coded process
corresponds to the interrupt rate. The target support package calculates and
configures the timer period to ensure the desired sample rate.

Schedulers and Timing

The minimum achievable base rate sample time depends on the algorithm
complexity and the CPU clock speed. The maximum value depends on the
maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and no sample
time is defined explicitly, Simulink assigns a default sample time of 0.2
second.

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When the model is finally
executed, it is for time O.

Asynchronous Scheduling

Target Support Package software facilitates modeling and automatically
generating code for asynchronous systems by using the following scheduling
blocks:

e (C5000/C6000 Hardware Interrupt and Idle Task blocks for bare-board
code generation mode

e DSP/BIOS Hardware Interrupt, DSP/BIOS Task, and DSP/BIOS Triggered
Task blocks for DSP/BIOS code generation mode

C6000 Hardware Interrupt blocks enable selected hardware interrupts for the
TI TMS320C6000 DSP, generate corresponding ISRs, and connect them to the
corresponding interrupt service vector table entries.

When you connect the output of the C6000 Hardware Interrupt block to the
control input of a function-call subsystem, the generated subsystem code is
called from the ISRs each time the interrupt is raised.

The C6000 Idle Task block specifies one or more functions to execute as
background tasks in the code generated for the model. The functions are
created from the function-call subsystems to which the Idle Task block is
connected.

The DSP/BIOS Hardware Interrupt block (in DSP/BIOS code generation
mode) has the same functionality as the bare-board C6000 Hardware

2-25

2 Targeting C6000™ DSP Hardware

2-26

Interrupt block. The configuration and low-level handling of the hardware
interrupts is implemented through DSP/BIOS using DSP/BIOS Hardware
Interrupt module and DSP/BIOS dispatcher.

DSP/BIOS Task blocks (DSP/BIOS code generation mode) spawn free-running
tasks as separate DSP/BIOS threads. The spawned task runs the function-call
subsystem connected to its output. Blocks in the subsystem may use various
conditions and techniques to control sharing sources with other tasks.

DSP/BIOS Triggered Task blocks (in DSP/BIOS code generation mode) spawn
semaphore-controlled tasks as separate DSP/BIOS threads. The semaphore
that enables execution of a single instance of the task is posted by an ISR that
is created by a DSP/BIOS Hardware Interrupt block. This block is connected
to a DSP/BIOS Triggered Task block.

Asynchronous Scheduler Examples

Now you can use an asynchronous (real-time) scheduler for your target
application. Earlier versions of Target Support Package software used a
synchronous CPU timer interrupt-driven scheduler. With the asynchronous
scheduler you can define interrupts and tasks to occur when you want them to
using blocks in the following libraries:

® Core Support library (idelinklib common)
e DSP/BIOS library (dspbioslib)

Also, you can schedule multiple tasks for asynchronous execution using those
blocks libraries.

The following figures show a model updated to use the asynchronous
scheduler rather than the synchronous scheduler.

Before
[P Inl outl Bl Dead Zone
= u —™
e In o In2 Qutl I _b _)
CET1Z DSE [Ind out3 co éicnsn_
2D > o P 1~ g_put
Ind outd
. Asvm Ll " Ll — ™ 3 Asym
Dyadic Analy=i= pDelay Alignment Soft Threshold p.agic synthesis

Filter EBank Filter Bank

Schedulers and Timing

After

TEE

DEP/EIOE

Task

functian (]

Function-Call

Subs

vatemn

Model Inside the Function Call Subsystem Block

function

Hic In
CET12 DSK
ADC

™

T

3 Asvm

Inl

In2

FYYY

Ind

Ind

Cutl
Cut?
Cutld
Cutd

I
g
[
'™
™

Dvadic Analyeis
Filter Bank

Delayw

Alignment

Soft Threshold

Dead Zone

TF

-

2 A=sTm

YYYY

[

Cut put

Dyvadic Synthesis
Filter Bank

C6712 DK
DARC

Compatibility Considerations. The V3.0 changes in the real-time scheduler
can break some existing multirate models that contain codec blocks such as
the ADC and DAC. The models affected contain at least one sample rate that
is faster than the codec block rate. You do not run into this problem if all
rates in the model are lower than the codec rate.

The new scheduler provides improved control for your processing and

improved performance. You should recast all of your models to use the new

asynchronous scheduler. To update your models, embed the entire processing
algorithm or system in a function-call subsystem driven by a DSP/BIOS Task
or Idle Task block from the DSP/BIOS library.

An example of such a model contains a combination of an ADC block and a
DAC block, with a processing algorithm between them that executes at the
higher rate. If you run code generated for such a model in multitasking or
auto solver mode, you might hear occasional audio glitches or your program
may overrun. The exact symptom of the problem depends on the run-time
overrun action setting in the Embedded IDE Link options.

2-27

2 Targeting C6000™ DSP Hardware

2-28

The following model demonstrates one possible model configuration that can
demonstrate the audio problems.

FDATool
Lins In
5 . CA/T71l3 DSKE
c6713 Dsk ! ‘T‘_{, —D‘LYY_\—.' l,-{l — DAC
ADC Upsampl= - Downsampl = DAC
Digital

Filter Design

This multirate model uses two interrupts to control real-time execution of the
generated code:

* A DMA interrupt to drive the execution of the code for ADC and DAC blocks

® A timer interrupt to drive the execution of the code for the FIR filter at an
increased sample rate

In earlier product versions, the generated scheduler constantly synchronized
the DMA and timer interrupts to ensure they remained in sync with one
another, despite the possible clock drift with interrupts that are recorded by
independent clock sources.

With the new real-time scheduler, the product does not synchronize the ADC
and timer interrupts.

One interrupt may get out of sync with the other, with the time difference

between them (drift) fluctuating with changes in the independent interrupt
clocks. When the drift reaches a critical threshold, processing may skip an
instance of a lower-priority task.

At that point, the interrupts are back in sync and the process continues.
Losing synchronization between the interrupts can corrupt the audio signal or
lead to an interrupt overrun.

To avoid the audio problems in an existing model that you cannot update to
the new scheduler, set the run-time overrun action for the model to either
None or Notify and_continue to prevent the program from overrunning.

Schedulers and Timing

Uses for Asynchronous Scheduling

The following sections present common cases for the scheduling blocks
described in the previous sections.

Free-Running DSP/BIOS Task

The following model illustrates a case where a reverberation algorithm runs
in the context of a free-running DSP/BIOS task.

DER/EBIOZ

TEE

Task

functiani)

Cedle DR E]

DIP Switch hl]]]]]l tl]]]] Ly

Inl

Rate Transition reverberation

Algorithm

Normally, the algorithms in this type of task run in free-running mode,
that is, they run repetitively and indefinitely. However, in this function-call
subsystem (shown in detail in the following figure), ADC and DAC blocks
suspend the execution of the task until the ADC and DAC data is available.

Each instance of the reverberation algorithm is triggered only after the data
buffer is available (for both ADC and DAC). An asynchronous ADC/DAC
device driver layer separate from the task function manages the triggers
condition. This device driver layer uses a direct memory access (DMA)
interrupt to signal to the DSP/BIOS task when ADC and DAC data become
available for the task function.

2-29

2 Targeting C6000™ DSP Hardware

2-30

indion

Mcin
CE416 DS
ADC

E ggeg

Slage 1 Sige2 Slage 3 Siaged

Delay hixi CB416 DK
DAC

Feedback Ganl

=rgle05) |‘

This model also illustrates how synchronous and asynchronous tasks can
work together. The code generated for C6416 DSK DIP Switch block runs
as a periodic task at the rate of 0.01 s. This is the only periodic task in the
model. It runs out of the context of a DSP/BIOS task scheduled via a timer
interrupt configured to go off every 0.01 second.

In general, Simulink blocks that specify nonzero sample rates, such as the
DIP Switch block, are scheduled by the C6000 synchronous scheduler and
executed either from the context of a DSP/BIOS task (if you incorporate
DSP/BIOS in your project) or a hardware interrupt (when you do not
incorporate DSP/BIOS).

To ensure data integrity, Simulink Rate Transition blocks connect the C6416
DSK DIP Switch block with the reverberation algorithm. This transition is
required because the blocks belong to different rate groups. If the synchronous
and asynchronous parts of the model do not interact, the Rate Transition
blocks are not needed.

Schedulers and Timing

Idle Task

The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

£

Idle Tashk
Idle Task

functioni]

Eeverberation
AElgorithm

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. However, the ADC and DAC blocks in
this subsystem run in blocking mode. As a result, subsystem execution of
the reverberation function is the same as the subsystem described for the
Free-Running DSP/BIOS Task. It is data driven via a background DMA
interrupt-controlled ISR, shown in the following figure.

£

function

Feaedback Gain

Mie In -
CE4lE DR CédIl,E:CD:'I\
ADC =
ADC Integer Delay oAC

2-31

2 Targeting C6000™ DSP Hardware

2-32

Location Command Subsystem

]

function

From FTD:
ichanl

From FTDU

Hardware Interrupt Triggered DSP/BIOS Task

The next model illustrates a case where a function (Location Command) runs
in the context of a hardware interrupt-triggered DSP/BIOS task.

LDEP/BIOES DEP/BIOT LDEP/EIOES
H¥I TEE TS
Hardware Interrupt Triggered Task Video tashk

functian () functiani()

ml—b%—hml.
m

Locat ion Command Rate Transitlon

Text Overlay
The DSP/BIOS Hardware Interrupt block installs an ISR function that signals
a DSP/BIOS task to run when the ISR detects an RTDX™ interrupt. Signaling
between the ISR and DSP/BIOS triggered task occurs via semaphores. This
task receives an RTDX message carrying the location command for the
downstream Text Insert block in the Text Overlay from the host computer.

The blocks running inside the Location Command and Text Overlay
subsystems are shown in the following figure.

The text overlay subsystem is executed as for the Free-Running DSP/BIOS
Task. A Rate Transition block connects the two subsystems that run at two
different asynchronous rates to ensure data integrity. The execution of two
asynchronous rates is ordered based on the priority settings for the DSP/BIOS
Task blocks.

Text Overlay Subsystem

function

Qutl Ingert Text

DLEd ZEVHY T DEEd ZEL

¥Pbr_poctl
ch ch

hFtc_poctl Ll
. cx Cxar
Video ADC ST ToFtc o] W CIvideo DAC
video Capturs video Displary

Schedulers and Timing

Hardware Interrupt Triggered Task

In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

ce0o0

IR0
Harchware Interrupt l

functian ()

Harchware Interrupt

LED Control

In this model, the C6000 Hardware Interrupt block installs a task that runs
when it detects an external interrupt. This task then toggles an external
C6416DSK LED on or off.

i)
function
lim
. Cedle DSHE
LED
on/off LED

Toggle

Scheduling Considerations

When you use the DSP/BIOS task blocks for scheduling, either the DSP/BIOS
Task block or the DSP/BIOS Triggered Task block, you must take care to
avoid some common scheduling pitfalls.

First, the DSP/BIOS operating system always executes the task with the
highest priority. Contrast this execution scheme with that of some other
real-time operating systems (RTOS) where each task gets its fair share of
processing time. Therefore, depending on the situation, there may be cases

2-33

2 Targeting C6000™ DSP Hardware

2-34

where lower-priority tasks never execute because a higher priority task is
never blocked.

A DSP/BIOS task blocks only when a blocking device driver block is included
in the function call subsystem the task is executing, such as ADC/DAC blocks
and C6000 UDP Receive blocks. If a particular DSP/BIOS task executes

a function call subsystem that does not include any device driver blocks,

and this particular task has the highest priority, it never releases the CPU,
effectively disabling all other lower priority tasks in the application.

For more information about asynchronous schedulers, refer to the “Handling
Asynchronous Events” chapter in your Real-Time Workshop documentation
in the online help system.

Setting Real-Time Workshop® Options for C6000™ Hardware

Setting Real-Time Workshop Options for C6000 Hardware

Before you generate code with the Real-Time Workshop software, set the
fixed-step solver step size and specify an appropriate fixed-step solver if the
model contains any continuous-time states. At this time, you should also
select an appropriate sample rate for your system. Refer to the Real-Time
Workshop User’s Guide for additional information.

Note Target Support Package software does not support continuous
states in Simulink models for code generation. In the Solver options in
the Configuration Parameters dialog box, you must select Discrete (no
continuous states) as the Type, along with Fixed step.

The Real-Time Workshop pane of the Configuration Parameters dialog
box lets you set numerous options for the real-time model. To open the
Configuration Parameters dialog box, select Simulation > Configuration
Parameters from the menu bar in your model.

2-35

Targeting C6000™ DSP Hardware

2-36

2
5’&. Configuration Parameters: untitl

The following figure shows the Real-Time Workshop categories when you
are using the target support package.

JConfiguration (Active)

Selack:

Sakver

Data Impaort/Expaort
- Opkimization
[Z-Diagnostics

+Model Referencing
S aving
-~Hardware Implementation
-~ Model Referencing
[=]-Simulation Target
i~ Symbols

Report
- Comments
Symbals
Custom Code
- Debug
- Inkerface
- Code Style
- Templates
- Daka Placement
~Diata Type Replacement
- Memory Sections
- Embedded IDE Link
[=1-HOL Cader

+EDd Tool Scripks

J

— Target selection

System target file: Iccslink_art.tlc

Browese. .. |

Makefile configuration

Language: |C LI
Description: Embedded IDE Link (ERT} code generation For TM3320{TM} DSP platforms

—Build proc;
TLC options: I

™| Generate makefile

Make command: |

Template makefile: |

—Data specification override

r Ignare custom storage classes

r Ignore kest point signals

Prioritized objectives: Unspecified
Check model before generating code:

[¥ | Generats cods only

Set objectives ... |

Off

| Check model ... |
Generate code |

Cancel | Help | Aoply

|»

I=]
|

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop targets including the target and always appear on the list.

The Configuration Parameters dialog box displays the last category under
Real-Time Workshop, Embedded IDE Link, when the System target file is
ccslink_grt.tlc or ccslink_ert.tlc.

Setting Real-Time Workshop® Pane Options

Setting Real-Time Workshop Pane Options

In this section...

“Accessing the Options” on page 2-37

“Target Selection” on page 2-39

“Documentation” on page 2-40

“Build Process” on page 2-40

“Custom Storage Class” on page 2-40

“Debug Pane Options” on page 2-41

“Optimization Pane Options” on page 2-42

“Embedded IDE Link Software Pane Options” on page 2-44

“Overrun Indicator and Software-Based Timer” on page 2-48

“Default Project Configuration — CustomMW” on page 2-48

Accessing the Options

To perform the following configuration tasks, use the options in the Select
tree under Real-Time Workshop.

® Determine your target, either C6000 or some other target if you are not
using Target Support Package software.

e Select your documentation needs.

¢ Configure your build process.

e Specify whether to use custom storage classes.

When you select the appropriate System target file, ccslink grt.tlc, you

enable automatic board selection for your model. After that, opening the

Configuration Parameters dialog box for your model triggers the automatic

board and processor selection tool, which searches for your C6000 target. If

the MATLAB software and CCS IDE cannot find a board that matches the
target designation, you see an error message dialog box.

2-37

2 Targeting C6000™ DSP Hardware

2-38

~~Diata Impork/Expork
- Cpkimization

Diagnostics
~Sample Time
- Diaka Validity
-~ Type Conversion
-~ Connectivity
- Compatibility
-~ Model Referencing
- Saving
Hardware Implementation

-~ Madel Referencing

Repart

-~ Camments
Symbiols

- Custom Code
Debug

- Interface
Code Style

- Templates
Data Flacement

~~Data Type Replacement
Mernory Sections

- Embedded IDE Link

[=-HDL Coder

-~ lobal Settings
Test Bench
~~ED#A Tool Scripts

\).

—Target selection

System target file: Iccs\ink_ert.tlc

Language: IC

Description: Embedded ICE Link (ERT) code generation for TMS320(TM}) DSP platforms

Browse. .. |

— Build pracs

TLC options: I

Makefile configuration

I™ Generate makefile

Make command: I

Template makefile: |

—Data specification override

'l Ignore custom storage classes r Ignore test point signals

Prioritized objectives: Unspecified

Check model before generating code: |OFf

¥ Generate code only

Set objectives ... |
j Check madel ... |
Generate code |

Cancel Help

| Apply

Setting Real-Time Workshop® Pane Options

E
5’.&, Configuration Parameters: untitled/Configuration (Active)

Select: V¥ Create code generation report ¥ Launch report autamatically

~-Solver
~~Diata Impork/Expork
- Ophirnization [V Cade-to-madel

[71-Diagnostics
- Sample Time [~ Model-to-code Configure, ..

- Diaka Validity
- Type Conversion -~ Traceahility Repart Conkent:

|»

— Mavigation

-~ Connectivity
- Compatibility
-Model Referencing [~ Traceable Simulink blocks
- Saving
Hardware Implementation
~Model Referencing ™ Traceable Embedded MATLAE functions
[F-Simulation Target
i Symbols
H Custom Code
[=-Real-Time Warkshop
Repart
-~ Camments
Symbiols
- Custom Code
Debug
- Interface
Code Style
- Templates
Data Flacement
~~Data Type Replacement
Mernory Sections
- Embedded IDE Link
[=-HDL Coder
-~ lobal Settings
Test Bench

-~EDA Tool Scripts ﬂ

J O I Cancel Help ! Apply |

[~ Eliminated } virtual blocks

[~ Traceable Stateflow ohjects

Target Selection

System target file

Clicking Browse opens the Target File Browser. For TTI’'s Code Composer
Studio, select ccslink_grt.tlc. When you select your target configuration,
Real-Time Workshop software chooses the appropriate system target file,
template make file, and make command.

If you are using the Real-Time Workshop Embedded Coder software, select
the ccslink_ert.tlc target in System target file.

2-39

2 Targeting C6000™ DSP Hardware

2-40

Documentation

Create code generation report

After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop software writes the

code generation report files in the html subfolder of the build folder. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop software. You can also use

docsearch 'Create code generation report'

at the MATLAB prompt to get more information.

When you select Model-to-code and Code-to-model, your HTML report
adds hyperlinks to various features in your Simulink model. Hyperlinks
within the displayed report let you view the blocks or subsystems that
generated the report. Click the hyperlinks to view the relevant blocks or
subsystems in your Simulink model.

Launch report automatically

Automatically opens a MATLAB Web browser window and displays

the code generation report. When you clear this option, you can

open the code generation report (modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser manually.

Build Process
For C6000 projects, disregard the Build Process options.

Custom Storage Class

When you generate code from a model employing custom storage classes
(CSC), make sure to clear Ignore custom storage classes. This setting is
the default value for Target Support Package software and for Real-Time
Workshop Embedded Coder software.

Setting Real-Time Workshop® Pane Options

When you select Ignore custom storage classes,

® Objects with CSCs are treated as if you set their storage class attribute
to Auto.

® The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a target that does not
support CSCs, such as the generic real-time target (GRT), without having to
reconfigure your parameter and signal objects.

Generate code only

The Generate code only option does not apply to targeting with the target
support package. To generate source code without building and executing the
code on your target, select TI C6000 runtime from the Category list in the
Select tree. Then, under Runtime, select Generate code only for Build
action. You cannot use DSP/BIOS features when you use the Generate code
only option for the Build action.

Debug Pane Options

Real-Time Workshop software uses the Target Language Compiler (TLC)
to generate C code from the model.rtw file. The TLC debugger helps you
identify programming errors in your TLC code. Using the debugger, you can

e View the TLC call stack.

¢ Execute TLC code line-by-line and analyze and/or change variables in a
specified block scope.

2-41

Targeting C6000™ DSP Hardware

2-42

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this dialog box, you set options that are specific
to Real-Time Workshop process and TLC debugging.

2
Lé: Configuration Parameters: untitled,/Configuration {Active)

Selack:

=)

=8

-

B

Sakver
Data Impaort/Expaort
Cptirnization
Diagnostics
~Sample Time
~Drata Validity
- Type Conversion
- Conneckivity
- Compatibility
~Model Referencing
- Saving
Hardware Implementation
Model Referencing
Simulation Target
i Symbals
- Custom Code
Real-Time Workshop
- Repork
- Comments
Symbals
Custom Code
)
- Inkerface
- Code Style
- Templates
- Daka Placement
~Diata Type Replacement
- Memory Sections
- Embedded IDE Link
HOL Coder
~Global Settings
~Test Bench
~EDd Tool Scripks

9

—Build proc

|»

¥ verbose buid

[~ Retain rtw File

— TLC proas

I™ Profile TLC
[~ Start TLC debugger when generating cods
[~ Start TLC coverage whan generating code

I~ Enable TLC assertion

=

oK Cancel | Help | Aoply |

For details about using the options in Debug, refer to “About the TLC
Debugger” in your Real-Time Workshop Target Language Compiler
documentation.

Optimization Pane Options

On the Optimization pane in the Configuration Parameters dialog box,

you set options for the code that Real-Time Workshop software generates
during the build process. You use these options to tailor the generated code to
your needs. Select Optimization from the Select tree on the Configuration

Setting Real-Time Workshop® Pane Options

Parameters dialog box. The figure shows the Optimization pane when you
select the system target file ccslink grt.tlc under System target file.

5’ &« Configuration Parameters: untitled iguration (Active)
Seleck: | —Sirmulation and code generation el
Sohver ¥ Block reduction ¥ Conditional input branch execution
Data Import{Export
¥ Implementt logic signals as Boolean data (vs. doubls) ¥ Signal storags reuse
™ Inline parameters Configure ... |
Application lifespan (days) I 1
™ Use integet division to handle net slopes that are reciprocals of integers
Model Referencing —Code generation
- Saving
~-Hardware Implementation Parameter structure: |Mantisrarchical =l
-~ Model Referencing
imulation Target — Signal
~Symbols
v v
e Custom Code IV Enable local black outputs ¥ Reuse black outputs
[=-ReakTime Workshop I Ignore integer downcasts in Folded expressions I™ | Inline invariant signals
- REport
- COMMEnts W Eliminate superfluous local variables (Expression folding) [Pack Boolean data into bitFields
-~ Symibols ™ Minimize data copies between local and global varisbles
- Custom Code
- Debug ™ simplify array indexing
- Inker.
""CHUS; :E:Ie Loop unrolling threshold: |5
Ternplates ¥ Use memcpy For vector assignment Memcpy threshold (bytes): |64
Data Placement
Diata Type Replacement Pass reusable subsystem outputs as: |Struckure reference LI
- Memory Sections
Embedded IDE Link —Data initializatior E
[=-HOL Coder
I~ Remove root level I[f0 zero initialization ¥ Use memset to initialize floats and doubles to 0.0
I~ Remove internal data zero initialization ¥ Gptimize initialization code for model reference
—Integer and fixed-paint
I™ Remove code from Floating-point to integer conversions that wraps out-of-range values LI
J oK Cancel | Help | Apply |

These are the options typically selected for Real-Time Workshop software:

Conditional input branch execution

Signal storage reuse

Enable local block outputs

Reuse block outputs

Eliminate superfluous local variables (Expression folding)

2-43

2 Targeting C6000™ DSP Hardware

2-44

¢ Loop unrolling threshold

® Optimize initialization code for model reference

For more information about using these and the other Optimization options,
refer to your Real-Time Workshop documentation.

Embedded IDE Link Software Pane Options

On the select tree, the Embedded IDE Link entry provides options in these
areas:

* Target Selection — Export a handle to your MATLAB workspace

¢ Code Generation — Configure your code generation requirements, such
as enabling DSP/BIOS

®* Project Options — Set build options for your project code generation

* Runtime — Set options for run-time operations, like the build action

Target Selection

When you use Real-Time Workshop software to build a model to a C6000
target, Target Support Package software makes a connection between the
MATLAB® and CCS IDE software. If you have used Embedded IDE Link
software, you are familiar with function ticcs, which creates objects the
reference between the IDE and MATLAB. This option refers to the same
object, called cc in the function reference pages. Although Embedded IDE
Link software is a bridge to a specific instance of the CCS IDE, what it really
1s an object that contains information about the IDE instance it refers to, such
as the target board and processor it accesses. In this pane, the Export IDE
handle to MATLAB base workspace option lets you instruct the target
support package to export the object to your MATLAB workspace, giving it
the name you assign in IDE link handle name. When you select Export
IDE handle to MATLAB base workspace, the software also exports the
IDE handle to the workspace during code generation, even when error occurs.

Code Generation

From this category, you select options that define the way your code is
generated:

Setting Real-Time Workshop® Pane Options

® Profile real-time execution

To enable the real-time execution profile capability, select Profile real-time
execution. With this selected, the build process instruments your code to
provide performance profiling at the task level. When you run your code, the
executed code reports the profiling information in

Project Options

Before you run your model as an executable on any processor, configure the
project options for the model. By default, the setting for the project options is
Custom, which applies to MathWorks specified compiler and linker settings
for your generated code.

Compiler options string

To let you determine the degree of optimization provided by the TT optimizing
compiler, you enter the optimization level to apply to files in your project. For
details about the compiler options, refer to your CCS IDE documentation.

Click Get From IDE to import the compiler option setting from the current
project in the IDE. To reset the compiler option to the default value, click
Reset.

Linker options string

To let you specify the options provided by the TI linker during link time, you
enter the linker options as a string. For details about the linker options,
refer to your CCS IDE documentation. When you create new projects, Target
Support Package software sets no linker options.

Click Get From IDE to import the linker options string from the current
project in the IDE. To reset the linker options to the default value of no
options, click Reset.

System stack size (bytes)

Enter the amount of memory to use for the stack. For more information,
refer to Local block outputs on the Optimization pane of the Configuration
Parameters dialog box. The block output buffers are placed on the stack until

2-45

2 Targeting C6000™ DSP Hardware

2-46

the stack memory is fully allocated. After that, the output buffers go in
global memory.

Runtime

Before you run your model as an executable on any C6000 target, you must
configure the run-time options for the model on the board.

By selecting values for the options available, you configure the operation of
your target.

Build action

To specify to Real-Time Workshop software what to do when you click Build,
select one of the following options. The actions are cumulative—each listed
action adds features to the previous action on the list and includes all the
previous features:

® Create Project — Directs Real-Time Workshop software to start CCS
IDE and populate a new project with the files from the build process. This
option offers a convenient way to build projects in CCS IDE. The build
process for a model also generates the files modelname.c, modelname.cmd,
modelname.bld, and many others. It puts the files in a build folder named
modelname_ticcs in your MATLAB working folder. This file set contains
many of the same files that Real-Time Workshop software to populate a
CCS IDE project when you choose Create Project for the build action.

® Archive_library — Directs Real-Time Workshop software to archive the
project for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your CCS IDE projects for models that you use in model referencing.

® Build — Builds the executable COFF file, but does not download the file
to the target.

® Build_and_execute — Directs Real-Time Workshop software to build,
download, and run your generated code as an executable on your target.

® Create_ Processor_in_the Loop Project — Embedded IDE Link
software provides features that you use to accomplish processor-in-the-loop
(PIL) development. For more information about PIL, refer to Verification
and “Verifying Generated Code via Processor-in-the-Loop”. When you

Setting Real-Time Workshop® Pane Options

select this, you can right-click a subsystem in your model and create a PIL
block and executable from the subsystem.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop software
when to stop the code generation and build process.

To run your model on the target, select Build_and_execute. This selection
is the default build action; Real-Time Workshop software automatically
downloads and runs the model on your target board.

Note When you build and execute a model on your target, the Real-Time
Workshop build process resets the target automatically. You do not need to
reset the board before building models.

Interrupt overrun notification method

To enable the overrun indicator, choose one of three ways for the target
processor to respond to an overrun condition in your model:

® None — Ignore overruns encountered while running the model.

® Print_message — When the DSP encounters an overrun condition, it
prints a message to the standard output device, stdout.

® Call custom_function — Respond to overrun conditions by calling
the custom function you identify in Interrupt overrun notification
function.

Interrupt overrun notification function

When you select Call custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the
function the processor should use to notify you that an overrun condition
occurred. The function must exist in your code on the processor.

2-47

2 Targeting C6000™ DSP Hardware

2-48

Overrun Indicator and Software-Based Timer

When your digital signal process application cannot complete the calculations
and data manipulations required to yield a result before the available clock
cycles expire, your model can generate unreliable data. Failing to complete an
algorithm is called overrunning, and is one of the most important errors to
identify and eliminate in digital signal processing design and implementation.

The Embedded IDE Link software provides an overrun indicator that notifies
you when your process overruns.

Limitations — The overrun indicator does not work in multirate systems
where the rate in the process is not the same as the base clock rate for your
model. When this is the case, the timer/scheduler in the DSP provides the
interrupts for setting the model rate and cannot indicate that an overrun
has occurred.

Default Project Configuration — CustomMW

Although CCS IDE offers two standard project configurations, Release and
Debug, models you build with Target Support Package software use a custom
configuration that provides a third combination of build and optimization
settings—CustomMw.

Project configurations define sets of project build options. When you specify
the build options at the project level, the options apply to all files in your
project. For more information about the build options, refer to your TI CCS
IDE documentation.

The default settings for CustomMW are the same as the Release project
configuration in CCS IDE, except for the compiler options discussed in the
next section. CustomMW uses different compiler optimization levels to preserve
important features of the generated code.

Default Compiler Build Options in CustomMW

When you create a new project or build a model to your TI C6000 hardware,
your project and model inherit the build configuration settings from the
configuration CustomMW. The settings in CustomMW differ from the settings in
the default Release configuration in CCS IDE in the compiler settings.

Setting Real-Time Workshop® Pane Options

For memory configuration, where Release uses the default memory model
that specifies near functions and data, CustomMW specifies near functions and
data—the -m11 memory model—because some custom hardware might not
support far data or aggregate data. Your CCS IDE documentation provides
complete details on the compiler build options.

You can change the individual settings or the build configuration within CCS

IDE. Build configuration options that do not appear on these panes default to
match the settings for the Release build configuration in CCS IDE.

2-49

2 Targeting C6000™ DSP Hardware

2-50

Model Reference and Target Support Package Software

In this section...

“Overview” on page 2-50
“How Model Reference Works” on page 2-50

“Using Model Reference with Target Support Package Software” on page
2-52

“Configuring Targets to Use Model Reference” on page 2-53

Overview

Model reference lets your model include other models as modular components.
This technique provides useful features because it:

¢ Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

® Lets you generate code once for all the modules in the entire model and
only regenerate code for modules that change.

® Lets you develop the modules independently.

¢ Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works

Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

® Top model — The root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

Model Reference and Target Support Package™ Software

e Referenced models — Blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online help system.

Model Reference in Simulation

When you simulate the top model, Real-Time Workshop software detects
that your model contains referenced models. Simulink generates code for the
referenced models and uses the generated code to build shared library files for
updating the model diagram and simulation. It also creates an executable (a
MEX file, .mex) for each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink rebuilds the model reference files. Whether reference
files or models are rebuilt depends on whether and how you change the models
and on the Rebuild options settings. You can access these setting through
the Model Reference pane of the Configuration Parameters dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from

models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Now, for each referenced model, the code generation process calls make rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, Real-Time Workshop software calls

make_rtw on the top model, linking to all the library files it created for the
associated referenced models.

2-51

2 Targeting C6000™ DSP Hardware

2-52

Using Model Reference with Target Support Package
Software

With few limitations or restrictions, the target support package provides full
support for generating code from models that use model reference.

Build Action Setting

The most important requirement for using model reference with the TI
targets is that you must set the Build action (go to Configuration
Parameters > Embedded IDE Link) for all models referred to in the
simulation to Archive_library.

To set the build action

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.
The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link.

4 In the right pane, under Runtime, set Build action to Archive library.

If your top model uses a reference model that does not have the build action
set to Archive library, the build process automatically changes the build
action to Archive library and issues a warning about the change.

As a result of selecting the Archive library setting, other options are
disabled:

e DSP/BIOS is disabled for all referenced models. Only the top model
supports DSP/BIOS operation.

¢ Overrun action, Overrun notification method, Exporting CCS
object to the workspace, and Stack size are all disabled for the
referenced models.

Model Reference and Target Support Package™ Software

Target Preferences Blocks in Reference Models

Each referenced model and the top model must include a Target Preferences
block for the correct target. You must configure all the Target Preferences
blocks for the same target.

To obtain information about which compiler to use and which archiver to
use to build the referenced models, the referenced models require Target
Preferences blocks. Without them, the compile and archive processes does
not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations

Model reference with Target Support Package software does not allow you to
use certain blocks or S-functions in reference models:

® No blocks from the C62x DSP Library (tic64dsplib) (because these are
noninlined S-functions)

® No blocks from the C64x DSP Library (tic62dsplib) (because these are
noninlined S-functions)

e No noninlined S-functions

® No driver blocks, such as the ADC or DAC blocks from any Target Support
Package library

Configuring Targets to Use Model Reference

Targets that you plan to use in Model Referencing must meet some general
requirements.

* A model reference compatible target must be derived from the ERT or
GRT targets.

® When you generate code from a model that references another model, you
need to configure both the top-level model and the referenced models for
the same code generation target.

2-53

2 Targeting C6000™ DSP Hardware

2-54

¢ The External mode option is not supported in model reference Real-Time
Workshop target builds. Target Support Package software supports
External mode, but not with model reference. If you select this option, it
is ignored during code generation. For more information, please see the
“Communicating With Code Executing on a Target System Using Simulink
External Mode” chapter in the Real-Time Workshop User’s Guide.

® To support model reference builds, your TMF must support use of the
shared utilities folder, as described in Supporting Shared Utility folders
in the Build Process.

To use an existing target, or a new target, with Model Reference, you set the
ModelReferenceCompliant flag for the target. For information on how to set
this option, refer to ModelReferenceCompliant in the online help system.

If you start with a model that was created prior to version 2.4 (R14SP3),
to make your model compatible with the model reference target, use the
following command to set the ModelReferenceCompliant flag to On:

set_param(bdroot, 'ModelReferenceCompliant','on')

Models that you target with the target support package versions 2.4 and later
automatically include the model reference capability. You do not need to
set the flag.

Targeting Supported Boards

Targeting Supported Boards

In this section...

“Overview” on page 2-55

“Typical Targeting Process” on page 2-56

“Targeting the C6713 DSP Starter Kit” on page 2-56
“Configuring Your C6713DSK” on page 2-58
“Confirming Your C6713DSK Installation” on page 2-59

Overview

Texas Instruments markets a complete set of tools for you to use with

the a range of development boards, such as the C6713 DSK. These tools
are primarily intended for rapid prototyping of control systems and
hardware-in-the-loop applications. This section provides a brief example of
how to use TI development tools with Real-Time Workshop software and
the C6713 DSK blocks.

Executing code generated from Real-Time Workshop software on a particular
target in real time requires target-specific code. Target-specific code includes
I/0 device drivers and an interrupt service routine. Other components, such
as Embedded IDE Link software, are required if you need the ability to
download parameters on the fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must ensure that the target-specific components
are compatible with the target hardware.

To allow you to build an executable, Target Support Package software
provides a target makefile specific to the evaluation module. This target
makefile invokes the optimizing compiler, provided as part of TI Code
Composer Studio software.

Used in combination with Real-Time Workshop software, TI products provide

an integrated development environment that, once installed, needs no
additional coding.

2-55

2 Targeting C6000™ DSP Hardware

2-56

Typical Targeting Process

Generally, targeting hardware, or a development environment as some call it,
requires that you complete a series of processes that starts with building your
model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

2 Add target-specific blocks to your model, such as ADC and DAC blocks,
and configure the block parameters.

3 Add a target preferences block to your model. Select the block that best
matches your target—one of the device specific blocks, like C6713 DSK, or
the Custom Board C6000 target preferences block when none of the specific
blocks is appropriate. All models that you target to a C6000-processor-based
hardware must have a target preferences block at the top level of the model.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate sections to the memory segments, and
configure other target-specific options.

5 Set the configuration parameters for your model. Notice that you do this
step after you add the target preferences block to your model.

6 Build your model to your target.

Targeting the C6713 DSP Starter Kit

After you install the C6713 DSK development board and supporting TI
products on your PC, start the MATLAB software. At the MATLAB
command prompt, enter c6713dsklib. This opens a Simulink block library,
c6713dsklib, that includes a set of blocks for C6713 DSK I/O devices, as
described in the following table.

Block Description

C6713 DSK ADC Configure the analog to digital converter

C6713 DSK DAC Configure the digital to analog converter

C6713 DSK LED Control the user status LEDs on the C6713 DSK
C6713 DSK Reset Reset the processor on the C6713 DSK

Targeting Supported Boards

These blocks are associated with your C6713 DSK board. As needed, add the
blocks to your model.

With your model open, select Simulation > Configuration Parameters.
From this dialog box, select Real-Time Workshop from the Select tree. You
must specify the appropriate versions of the system target file. For the
C6713 DSK, in the Real-Time Workshop pane, specify System target file
—ccslink_grt.tlc

With this configuration, you can generate a real-time executable and download
it to the TT C6713 evaluation board. You generate the executable by clicking
Build on the Real-Time Workshop pane. The Real-Time Workshop software
automatically generates C code and inserts the I/O device drivers as specified
in your block diagram. These device drivers are inserted in the generated C
code as inlined S-functions. Inlined S-functions offer speed advantages and
simplify the generated code. For more information about inlining S-functions,
refer to Target Language Compiler Reference documentation. For a complete
discussion of S-functions, refer to your Writing S-Functions documentation.

During the same build operation, the software invokes the TI compiler

to build an executable file. If you select the Build and_execute option,
Real-Time Workshop software automatically downloads the executable to the
TI evaluation board via the peripheral component interface (PCI) bus. After
downloading the executable file to the C6713 DSK, the build process runs the
file on the processor.

Starting and Stopping DSP Applications on the C6713 DSK

When you generate code, build the project, and download the code for your
Simulink model to your C6713 DSK, you are running actual machine code
corresponding to the block diagram you built in Simulink software. To start
running your DSP application on the evaluation module, you must open your
Simulink model and rebuild the machine executable by clicking Build on the
Real-Time Workshop pane. To start the application on the C6713 DSK,
you use Real-Time Workshop software to rebuild the executable from the
Simulink model and download the code to the board.

Your model runs until it encounters one of the following actions:

® You select Debug > Halt in CCS IDE.

2-57

2 Targeting C6000™ DSP Hardware

2-58

® You shut down the host PC.
® The process encounters a Stop block in the model code.
¢ The running application encounters an error condition that stops the

process.

If you included a Reset C6713 DSK block in your model, clicking the block
stops the running application and restores the digital signal processor to
its initial state.

Note When you build and execute a model on the C6713 DSK, the Real-Time
Workshop build process resets the evaluation module automatically. You do
not need to reset the board before building models. To stop processes that are
running on the evaluation module, or to return the board to a known state
for any reason, use the Reset C6713 DSK block.

Configuring Your C6713DSK

When you install the C6713DSK, set the dual inline pin (DIP) switches as
shown in the following table. If you have installed the board with different
settings, reconfigure the board. Refer to your TMS320C6201/6713Evaluation
Module User’s Guide for details.

DIP Switch Name Setting Effect
SW2-1 BOOTMODE4 On Boot mode setting
SW2-2 BOOTMODE3 On Boot mode setting
SW2-3 BOOTMODE2 Off Sets memory map = 1
when SW2-5 is off
SW2-4 BOOTMODE1 On Boot mode setting
SW2-5 BOOTMODEO Off Sets memory map =1
when SW2-3 is off
SW2-6 CLKMODE On Sets multiply-by-4 mode
SW2-7 CLKSEL On Selects oscillator A
SW2-8 ENDIAN On Selects little endian mode

Targeting Supported Boards

DIP Switch Name Setting Effect

SW2-9 JTAGSEL Off Selects internal Test Bus
Controller (TBC)

SW2-10 USER2 On User-defined option

SW2-11 USERT On User-defined option

SW2-12 USERO On User-defined option

Confirming Your €67 13DSK Installation

Texas Instruments supplies a test utility to verify the operation of the board
and its associated software. For complete information about running the
test utility and interpreting the results, refer to your TMS320C6201/6713
DSP Starter Kit User’s Guide.

To run the C6713 DSK verification test, complete the following steps after
you install your board:

1 Start CCS IDE.

2 Select Start > Programs > Code Composer Studio > DSK Confidence
Test. As the test runs, the results appear on your display.

By default, the test utility does not create a log file to store the test results.
To specify the name and location of a log file to contain the results of

the confidence test, use the command line options in CCS IDE to run

the confidence test utility. For further information about running the
verification test from a DOS window and using the command line options,
refer to TMS320C6201/6713 Evaluation Module User’s Guide.

3 Review the test results to verify that everything works. Check that the
options settings match the settings listed in the table above.

If your options settings do not match the configuration shown in the
preceding table, reconfigure your C6713 DSK. After you change your board
configuration, rerun the verification utility to check your new settings.

2-59

2 Targeting C6000™ DSP Hardware

2-60

Simulink Models and Targeting

In this section...

“Creating Your Simulink Model for Targeting” on page 2-60
“Blocks to Avoid in Your Models” on page 2-61

Creating Your Simulink Model for Targeting

You create real-time digital signal processing models the same way you create
other Simulink models—by combining standard DSP blocks and C-MEX
S-functions.

You add blocks to your model in several ways:

e Use blocks from the Signal Processing Blockset software

e Use blocks from the fixed-point blocks library TI C62x DSPLIB or TT C64x
DSPLIB

e Use other Simulink discrete-time blocks

e Use the blocks provided in the C6000 blockset: ADC, DAC, LED and Reset
blocks for specific supported target hardware

e Use blocks that provide the functions you need from any blockset installed
on your computer

e (Create and use custom blocks

Once you have designed and built your model, you generate C code and build
the real-time executable by clicking Build on the Real-Time Workshop
pane of the Configuration Parameters dialog box. The automatic build process
creates the file modelname.out containing a real-time model image in COFF
file format that can run on your target.

The file modelname.out is an executable whose format is target-specific. You
can load the file to your target and execute it in real time. Refer to your
Real-Time Workshop documentation for more information about the build
process.

Simulink® Models and Targeting

Blocks to Avoid in Your Models

Many blocks in the blocksets communicate with your MATLAB workspace.
All blocks generate code, but they do not work in the generated code as they

do on your desktop.

You avoid using certain blocks, such as the Scope block and some source and
sink blocks, in Simulink models that you use on Target Support Package
targets. These blocks waste time in the generated code waiting to send or
receive data from your MATLAB workspace, slowing your signal processing
application without adding instrumentation value.

The following table describes blocks you should not use in your target models.

Block
Name/Category | Library Description
Scope Simulink, Signal Provides oscilloscope view of

Processing
Blockset software

your output. Do not use the
Save data to workspace
option on the Data history
pane in the Scope Parameters
dialog box.

To Workspace Simulink Return data to your MATLAB
workspace.
From Workspace Simulink Send data to your model from

your MATLAB workspace.

Spectrum Scope

Signal Processing
Blockset

Compute and display the
short-time FFT of a signal.

It has internal buffering that
can slow your process without
adding value.

To File Simulink Send data to a file on your host
machine.
From File Simulink Get data from a file on your host

machine.

Triggered to
Workspace

Signal Processing
Blockset

Send data to your MATLAB
workspace.

2-61

2 Targeting C6000™ DSP Hardware

2-62

Block

Name/Category | Library Description

Signal To Signal Processing | Send a signal to your MATLAB
Workspace Blockset workspace.

Signal From
Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

Triggered Signal
From Workspace

Signal Processing
Blockset

Get a signal from your MATLAB
workspace.

To Wave device

Signal Processing
Blockset

Send data to a .wav device.

From Wave device

Signal Processing
Blockset

Get data from a .wav device.

To Wave file

Signal Processing
Blockset

Send data to a .wav file.

From Wave file

Signal Processing
Blockset

Get data from a .wav file.

In general, using blocks to add instrumentation to your application is

a valuable tool. In most cases, blocks you add to your model to display results
or create plots, such as Histogram blocks, add to your generated code without
affecting your running application.

Targeting Tutorial I — A More Complex Application

Targeting Tutorial Il — A More Complex Application

In this section...

“Overview” on page 2-63

“Working and Build folders” on page 2-64

“Setting Simulation Program Parameters” on page 2-65
“Selecting the Target Configuration” on page 2-66
“Building and Running the Program” on page 2-70
“Contents of the Build folder” on page 2-71

Overview

For this tutorial, we demonstrate an application that uses multiple
stages—using wavelets to remove noise from a noisy signal. Open the

demo model, c6713dskwdnoisf. As with any model file, you can run this
denoising demonstration by typing c6713dskwdnoisf at the MATLAB
prompt. The model also appears in the MATLAB demos collection in the Help
browser—under Simulink demos, in the Target Support Package category.
Here is a picture of the model as it appears in the demonstration library.

2-63

2 Targeting C6000™ DSP Hardware

2-64

Wavelet Denoising
CE713DEK

DSPIBIOS

Tazk

Info

Unlike the audio reverberation demo, this model is difficult to build from
blocks in Simulink software. It uses complex subsystems for the Delay
Alignment block and the Soft Threshold block. For this tutorial, you work
with a copy of the demonstration model, rather than creating the model.

This tutorial takes you through generating C code and building an executable

program from the demonstration model. The resulting program runs on your
C6713 DSK as an executable COFTF file.

Working and Build folders

It is convenient to work with a local copy of the c6713dskwdnoisf model,
stored in its own folder, which you named (something like c6713dnoisfex).
This discussion assumes that the c6713dnoisfex folder resides on drive d:.
Use a different drive letter if necessary for your machine. Set up your working
folder as follows:

1 Create the new model folder from the MATLAB command line by typing

Imkdir d:\c6713dnoisfex (on PC)

2 Make c6713dnoisfex your working folder.

Targeting Tutorial I — A More Complex Application

cd d:/c6713dnoisfex
3 Open the c6713dskwdnoisf model.

c6713dskwdnoisf
The model appears in the Simulink window.

4 From the File menu, choose Save As. Save a copy of the ¢c6713dskwdnoisf
model as d: /c6713dnoisfex/dnoisfrtw.mdl.

During code generation, Real-Time Workshop software creates a build folder
within your working folder. The build folder name is model target rtw,
derived from the name of your source model and your chosen target. In the
build folder, Real-Time Workshop software stores generated source code and
other files created during the build process. You examine the contents of the
build folder at the end of this tutorial.

Setting Simulation Program Parameters

To generate code correctly from the dnoisfrtw model, you must change some
of the configuration parameters. In particular, Real-Time Workshop software
uses a fixed-step solver. To set the parameters, use the Configuration
Parameters dialog box as follows:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

2 Click Solver and enter the following parameter values on the Solver pane.
Note that Target Support Package software does not honor a stop time if
you set one here.

Start Time: 0.0
Stop Time: inf

Solver options: set Type to Fixed-step. Select the Discrete solver
algorithm. (Targeting does not work with continuous time solvers.)

Fixed step size: auto

Tasking mode for periodic sample times: Auto

2-65

2 Targeting C6000™ DSP Hardware

3 Click Apply, and then click OK to close the dialog box.

4 Save the model. Configuration parameters persist with the model (as the
model configuration set), for you to use in future sessions.

In the next figure you see the Solver pane with the correct parameter settings.

r
%, Configuration Parameters: untitled/Configuration {Active)

El-Simulation Target
i Symbols
Custom Code

i Simulation ti

Start time: [0.0

Stop time: [10.0

™ Automatically handle rate transition For data transfer

- Optimization
[7]-Diagnostics (—Siolver option:

g:?:l\fa;gi: Type: [Fixed-step x| Solver: [discrate (no continuous states) =l

i Type Conversion Fixed-step size (Fundamental sampl time): [auto

i Connectivity

i Compatibility - -

i Model Referencing i~ Tasking and sample time option:

- Saving Periodic sample time constraint: [unconstrained =
~Hardware Implementation
-Model Referencing Tasking mode For petiodic sample times: |Auto LI

I¥ | Highier pricrity walue indicates higher task priarity.

[)-RealTime Workshop
i~Repart

i Comments

i Symbols

i Custom Code

i Debug

i Interface

i~ Code Stvle

i Templates

i Data Placement

i Data Type Replacement
i Memary Sections
+Embedded IDE Link e
[=-HDL Coder

i Global Settings

i Test Bench

+-EDA Tool Scripts

‘) oK I Cancel Help I Apply |

Selecting the Target Configuration
To specify the desired target configuration, choose the System target file.

In these tutorials, you do not need to specify these parameters individually.
Instead, you use the ready-to-run ccslink_grt.tlc target configuration.

2-66

Targeting Tutorial I — A More Complex Application

tree.

Note The Real-Time Workshop category has several subcategories that
you select using the Select tree in the Configuration Parameters dialog
box. During this tutorial you change or review options in just a few of the
categories in the

To target your C6713 DSK:

1 From the Simulation menu, choose Configuration Parameters. The
Configuration Parameters dialog box opens.

pane activates.

Select:

olver

ata ImportjExport
pimization
EFDiagnostics

Sample Time:

Data validity

Type Conversion
Connectivity
Compatibility
Model Referencing
Saving
~Hardware Implementation
+Model Referencing
lation Target
Symbols

Comments
Symbols
Custom Code:
Debug
Interface
Code Style
Templates
Data Placement
Data Type Replacement
Memory Sections
Embedded IDE Link
[=-HDL Coder

Global Settings

Test Bench
L--EDA Tool Scripts

9

2 Click Real-Time Workshop on the Select tree. The Real-Time Workshop

—Target selection

Syskem karget File: |ccslink_art.tlc

Browse ..

Makefile configuratiar

Language: Ic =
Description: Embedded IDE Link (ERT) code generation for TMS320{TM) DSP platforms

—Build proce
TLC options: [

I™ | Generate makefis

Make command; |

Template makefils: |

’rData specification override

r Ignore cuskom starage dasses

™ Ignors test peint signals

Prioritized objectives: Unspecified

¥ | Generate code anly.

Set objectives ...

Check model before generating code:

OfF

4| Check madel ...
Generate code

=]

o corcel | wep | ay |

3 Click Browse next to the System target file field. This opens the
System Target File Browser. The browser displays a list of available
target configurations. When you select a target configuration, Real-Time

2-67

2 Targeting C6000™ DSP Hardware

Workshop software automatically chooses the appropriate system target
file.

E! System Target File Browser: untitled B

System Target File: Description:

ert.tlc e ine Workshop Embedded Coder
ert.tle Visual C/C0++ Project Makefile only for the Real-Time Workshop Embed
ert_shrlib.tle Real-Time Workshop Bubedded Coder (host-based shared library target
grt.tle Generic Beal-Time Target

gre.tle Wisual C/C++ Project Makefile omly for the "gre" targec
grt_malloc.tle Generic Real-Time Target with dymamic memory allocation
grt_malloe.tle Visual C/C++ Project Makefile only for the "grt_malloc" target
mpoSSEexp.tle Target Support Package {for use with Freescale MPCSzx) {algorichm e
mpeSEEpil.tle Target Support Package {for use with Freescale MPCSxx) {processor-i
npeSsEre. tle Target Support Package {for use with Freescale MECSzx) {real-time)
mpeSEErt art.tle Target Support Package {for use with Freescale MECSxx) (xeax—cma_,ILI
4 4

Full Name: ‘:\jobarchive\idoc|2009_06_06_h0Sm19s48_joh85429_passimatlabitoolboxiidelinklextensionsiticeslrtwcesink_art.te

Templats Maksfle: none

Make Command: make_ttw

oK | Cancel | Help | Apphy. |

4 From the list of available configurations, select ccslink grt.tlc, and
click OK.

5 To decide whether to export a CCS handle to your MATLAB workspace
when you generate code, or run your model, select Embedded IDE Link
from the Select tree.

2-68

Targeting Tutorial I — A More Complex Application

7
#; Configuration Parameters: untitled/ Configuration {Active)

Select: —Runtime Cptio
- Solver ; e
- Data Tmport{Export Build action: Build_and_sxecute ¥
- Cptimization Interrupt averrun notification method; |Mone vI

£}-Diagnostics
i~ Sample Time Masimum time allawed ko build project (s): [1000

- Data Validity
{Type Conversion
b Connectivity

i~ Compatibility Project options: Custom =

- Model Referencing

b Saving Compiler options string: | Get From IDE &I

- Hardware Implementation

-Model Referencing Linker optians string: | {Get From IDE: Reset:

El-Simulation Target
[1Symbols System stack size (MAUS): [512

|»

—Project Optio

F Custom Code

E1-ReakTime Warkshop Code Generatio
i-Report
i Comments ™ Profile real-time execution
i Symbols

{ Custom Code r—Link Automatio

- Debu
[oetas Maximum time: alowed ko complete DE operation (<): [10
i Interface

i Embedded IDE Link

¥ Export IDE link handle to base workspace

EI-HDL Coder
{Global Settings IDE link handle name: | CCS_obj
i Test Bench
DA Tool Scripts - Diagnostic Optian:
Source file replacement: Iwarmng -
=
J oK Canesl | Help I Apply |

6 Set the Runtime and Project options as shown in the preceding figure.

7 To export the handle (a variable) that CCS IDE creates when you
generate code from your model, select Export IDE link handle to base
workspace, and enter a name for the handle in IDE link handle name.

8 Select Optimization from the Select tree. A new set of options appears.
The options displayed here are common to all target configurations. Make
sure that all options are set to their defaults, as shown in the following
figure.

2-69

2 Targeting C6000™ DSP Hardware

2-70

7
#; Configuration Parameters: untitled/ Configuration {Active)

Select: —Simulation and cods generation

|»

¥ Condtional input branch execution

¥ Signal storage reuse

Configure ... |

- salver [# Block reduction
- Data ImportfExpart
- ization ¥ Implement: logic signals as Bodlean data (v, double)
[7-Diagnostics
b Sarmple Time ™ Inline parameters
{Data Validity

- Type: Conversian Application lifespan (days) |\nf

i~ Connecctivity I~ Uss inkeger division to handls net slopes that are reciprocaks of intsgers
b Compatibliy

iModel Referencing —Code generatior

b Saving

+Hardware Implementation -~ Signak
-Model Referencing
E-Simulation Target

Symbols I~ Ignore integer domncasts in folded expressions

¥ Enable local block outputs

F Custom Code

: 3
E}-RealTime Workshap ¥ Eliminate superfluous local variables (Expression folding)

¥ Reuse block outputs

™ Inline invariant signals

i Report I~ Minimize data copies between local and global variables
£ Comments
J--Symbols Loop unroling thrashold: [5

i Custom Code

- Debug ¥ Use memepy Far wectar assignment

Memepy threshold (bytes): [64

i Interface

- Embedded IDE Link Data initializatior
EI-HDL Coder
{Global Settings

’7l~7 Use memset ta initialize floats and doubles to 0.0

i Test Bench

£ EDA Tool Seripts ~Integer and fixed-point

I Remove code from floating-paint ko inkeger conversions that wraps out-of -range values

¥ Remave cods from floating-paint ko nteger conversions with saturation that maps Nakl to zero

—Accelerating simulation:

Compiller optinization lsvel: [Optimizations off (Faster bulds)

I™ Werbose accelerator buids

Q9

oK coced | wep | sy |

9 Click OK to close the Configuration Parameters dialog box. Save the model

to retain your new build settings.

Building and Running the Program

The Real-Time Workshop build process generates C code from your model,
and then compiles and links the generated program.

To build and run your program:

1 Access the Configuration Parameters dialog box for your model.

2 Click Build in the Real-Time Workshop pane to start the build process.

3 A number of messages concerning code generation and compilation appear
in the MATLAB workspace. The initial messages are

Starting Real-Time Workshop build procedure for model:

Targeting Tutorial I — A More Complex Application

dnoisfrtw
Generating code into build folder: .\dnoisfrtw_c6000_rtw

The content of the succeeding messages depends on your compiler and
operating system. The final message is

Successful completion of Real-Time Workshop build procedure
for model: dnoisfrtw

4 The working folder now contains an executable, dnoisfrtw.exe.
In addition, Real-Time Workshop software created a build folder,
dnoisfrtw_c6000_rtw.

To review the contents of the working folder after the build, type the dir
command at the MATLAB command prompt.

dir
dnoisfrtw.exe dnoisfrtw_c6000_rtw
dnoisfrtw.mdl

5 To run the executable from the MATLAB command prompt, type
!dnoisfrtw

The “!” character passes the command that follows it to the operating
system, which runs the stand-alone dnoisfrtw program.

The program produces one line of output.
starting the model
6 To see the contents of the build folder, type

dir dnoisfrtw_c6713_rtw

Contents of the Build folder

The build process creates a build folder and names it model_target_rtw,
concatenating the name of your source model and your chosen target. In this
example, your build folder is named dnoisfrtw_c6713_rtw.

dnoisfrtw_c6713_rtw contains these generated source code files:

2-71

2 Targeting C6000™ DSP Hardware

® dnoisfrtw.c — The stand-alone C code that implements the model.

® dnoisfrtw.h — An include header file containing information about the
state variables

® dnoisfrtw_export.h — An include header file containing information
about exported signals and parameters

The build folder also contains other files used in the build process, such as the
object (.obj) files and the generated makefile (dnoisfrtw.mk).

2-72

Targeting Your C6713 DSK and Other Hardware

Targeting Your C6713 DSK and Other Hardware

In this section...

“Overview” on page 2-73

“Configuring Your C6713 DSK” on page 2-74
“Confirming Your C6713 DSK Installation” on page 2-74
“Running Models on Your C6713 DSK” on page 2-75

Overview

Target Support Package software lets you use Real-Time Workshop software
to generate, target, and execute Simulink models on the Texas Instruments
(TI) C6713 DSP Starter Kit (C6713 DSK). In combination with the C6713
DSK, your the target support package is the ideal resource for rapidly
prototyping and developing embedded systems applications for the TT C6713
Digital Signal Processor. The target support package focuses on developing
real-time digital signal processing (DSP) applications for the C6713 DSK.

This chapter describes how to use the target support package to create and
execute applications on the C6713 DSK. To use the targeting software, you
should be familiar with using Simulink to create models and with the basic
concepts of Real-Time Workshop software automatic code generation. To read
more about Real-Time Workshop software, refer to your Real-Time Workshop
documentation.

In this chapter, you will find sections that detail how to use the target support
package to build and download DSP applications in Simulink software to your
C6713 DSK and to the Texas Instruments Code Composer Studio IDE:

¢ Configuring your the target support package, in “Setting Real-Time
Workshop Options for C6000 Hardware” on page 2-35

¢ Configuring your Texas Instruments TMS320C6713 DSP Starter Kit, in
“Configuring Your C6713 DSK” on page 2-74

e Testing your hardware and software installation to be sure everything
works, in “Confirming Your C6713 DSK Installation” on page 2-74

2-73

2 Targeting C6000™ DSP Hardware

Configuring Your C6713 DSK

After you install and configure your C6713 DSK according to the instructions
in the CCS IDE online help, you do not need to configure further your
C6713 DSK.

Confirming Your C6713 DSK Installation

Texas Instruments supplies a test utility to verify operation of the board and
its associated software. For complete information about running the test
utility and interpreting the results, refer to your “TMS320CDSK Help” under
TMS320C6000 Code Composer Studio Help in the CCS online help system.

To run the C6713 DSK confidence test, complete the following steps after
you install and configure your board.

1 Open a DOS command window.
2 Access the folder \..\ti\c6000\dsk6x11\conftest

CCS IDE creates this folder when you install it. It contains the files to run
the C6713 confidence test.

3 Start the confidence test by typing dsk6xtst at the DOS prompt.

By default, the test utility creates a log file named dsk6xtst.log where
it stores the test results. To specify the name and location of a log file
to contain the results of the confidence test, use the CCS IDE command
line options to run the confidence utility. For further information about
running the confidence test from a DOS window and using the command
line options, refer to the "DSK Confidence Test" topic in the CCS IDE
online help.

4 Review the test results to verify that everything works.
If your confidence test fails, reconfigure your C6713 DSK. After you change

your board configuration, rerun the confidence utility to check your new
settings.

2-74

Targeting Your C6713 DSK and Other Hardware

Running Models on Your C6713 DSK

Texas Instruments markets a complete set of tools for use with the
C6713 DSK. These tools are primarily intended for rapid prototyping of
control systems and hardware-in-the-loop applications.

This section provides a brief example of how the TI development tools work
with Real-Time Workshop software, the target support package, and the
C6713 DSK Board Support block library.

Executing code generated from Real-Time Workshop software on a particular
target in real-time requires target-specific code. Target-specific code includes
I/0 device drivers and an interrupt service routine.

Other components, such as Embedded IDE Link software, are required if you
need the ability to download parameters on-the-fly to your target hardware.

Since these components are specific to particular hardware targets (in this
case, the C6713 DSK), you must ensure that the target-specific components
are compatible with the target hardware.

To allow you to build an executable, the target support package provides a
target makefile specific to C6000 hardware targets. This target makefile
invokes the optimizing compiler provided as part of CCS IDE.

Used in combination with the target support package and Real-Time
Workshop software, TI products provide an integrated development
environment that, once installed, needs no additional coding.

After you have installed the C6713 DSK development board and supporting
TI products on your PC, start the MATLAB software. At the MATLAB
command prompt, type c6713dsklib. This opens a Simulink block library,
c6713dsklib, that includes a set of blocks for C6713 DSK I/0 devices:

e (C6713 DSK ADC — Configure the analog to digital converter

e (6713 DSK DAC — Configure the digital to analog converter

e (6713 DSK LED — Control the user-defined light emitting diodes (LED)
on the C6713 DSK

2-75

2 Targeting C6000™ DSP Hardware

2-76

e (C6713 DSK DIP Switch — Set the dual inline pin switches on the C6713
DSK

e (6713 DSK Reset — Reset the processor on the C6713 DSK
These devices are associated with your C6713 DSK board.

With your model open, select Simulation > Configuration Parameters
from the menu bar to open the Configuration Parameters dialog box.

From this dialog box, click Real-Time Workshop on the select tree. You
must specify the appropriate versions of the system target file. For the C6713
DSK, in the Real-Time Workshop pane of the dialog box, specify System
target file — ccslink_grt.tlc

With this configuration, you can generate and download a real-time
executable to your TI C6713 DSK. Start the Real-Time Workshop build
process by clicking Build on the Real-Time Workshop pane. Real-Time
Workshop software automatically generates C code and inserts the I/O device
drivers as specified by the ADC and DAC blocks in your block model.

These device drivers are inserted in the generated C code as inlined
S-functions. Inlined S-functions offer speed advantages and simplify the
generated code. For more information about inlining S-functions, refer to
your Target Language Compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

During the same build operation, the software invokes the TI compiler to
build an executable file.

If you select the Build and_execute option, the executable file is
automatically downloaded via the peripheral component interface (PCI) bus
to the TI evaluation board. After downloading the executable file to the C6713
DSK, the build process runs the file on the digital signal processor.

Starting and Stopping DSP Applications on the C6713 DSK
When you create, build, and download a Simulink model to the C6713 DSK,
you are not running a simulation of your DSP application. You are running
the actual machine code corresponding to the block diagram you built in
Simulink software. To start running your DSP application on the evaluation

Targeting Your C6713 DSK and Other Hardware

module, you must open your Simulink model and rebuild the machine
executable by clicking Build on the Real-Time Workshop pane. Each time
you want to start the application on the C6713 DSK, you use Real-Time
Workshop software to rebuild the executable from the Simulink model and
download the code to the board.

Your model runs until the model encounters one of the following actions:

¢ Using the Debug > Halt option in CCS IDE

¢ Using halt from the MATLAB command prompt

¢ Encountering a Stop block in the model.

¢ (Clicking the C6713 DSK Reset block in your model (if you added one) or in
the DSK block library

Clicking the Reset block stops the running application and restores the digital
signal processor to its initial state.

2-77

2 Targeting C6000™ DSP Hardware

2-78

Creating Code Composer Studio Projects Without Building

In this section...

“Introduction” on page 2-78

“Creating Projects in CCS IDE Without Loading Files to Your Target” on
page 2-78

Introduction

Rather than targeting your C6000 board when you build your signal
processing application, you can create Texas Instruments Code Composer
Studio (CCS) IDE projects. Creating projects for CCS IDE lets you use the
tools provided by the CCS IDE software suite to debug your real-time process.

If you build and download your Simulink model to CCS IDE, Target Support
Package software opens Code Composer Studio software, creates a new CCS
IDE project named for your model, and populates the new project with all the
files it creates during the build process—the object code files, the assembly
language files, the map files, and any other necessary files. As a result,

you can immediately use CCS IDE to debug your model using the features
provided by the CCS IDE.

Creating a project in CCS IDE is the same as targeting C6000 hardware. You
configure your target options, select your build action to create a CCS IDE
project, and then build the project in CCS IDE by clicking Make Project.

Creating Projects in CCS IDE Without Loading Files
to Your Target

From the Select tree in the Configuration Parameters dialog box, select
Embedded IDE Link. Select Create Project for the Build action, as shown
in the next figure. The Build and Build _and_execute options create CCS
IDE projects as well. The Archive library option does not create a CCS IDE
project. None of the other options has an effect here. Ignore them when you
are creating a project in CCS IDE rather than generating code.

Creating Code Composer Studio™ Projects Without Building

#, Conflquration Parameters: untitied, Condiguration (Active)
Salect: Runtime Options. =
o Bulkd action: [Brsdl_and_execute =
Diata Import/Export
Optiraizateon Interrugt oworrun notification mashod: [Hone -
= Diagnastics
Sample Time IManimum time aliceed b build project (s): | 1000
Data Validity
Typsd Corvenrsion Project Cptians
Corrmciivity Praject options Custom =]
Compathility
el Referercing Compiler options sXng: | 02 -mem_nodal:datasfar GatFrom D6 [Resar I
saving .
options string: tFr I
Hardhware Irplernenta... L 2 [Gut From IDE
Modal Referencing System stack size (MaUs): [2152
£ Simuilation Target
Symbols Coda Generation
Custorn Code
r H
&-ReakTime Workshop Profie reak e sumoston
st Lk Ausoemation
Comments
Symboks Maimunm time allowed to complats € operation): [10
e e ¥ Export IDE bk handie to base workspace
g |
Inkerfaca IDE birk: handlie nama: | CCS_0b|
Coce Sty
Templates Diagrostc Options:

Data Placment
Dita Type Replace...
tMamary Sections
Embedded ICE Link

E-HOL Coder
e =]

Q N = T

Source file replacament: [warming =

After you select Create_CCS_Project, set the options for the Code
Generation options on the Embedded IDE Link category on the Select tree.

Return to the Real-Time Workshop category, clear Generate code only and
click Build to build your new CCS IDE project.

Real-Time Workshop software and Target Support Package software generate
all the files for your project in CCS IDE and create a new project in the IDE.
Your new project is named for the model you built, with a custom project

build configuration CustomMW, not Release or Debug.

In CCS IDE you see your project with the files in place in the folder tree.

2-79

2 Targeting C6000™ DSP Hardware

2-80

Targeting Custom Hardware

In this section...

“Overview” on page 2-80
“Typical Targeting Process” on page 2-82
“Targeting a Custom Target” on page 2-84

“Sections Pane” on page 2-92

“To Create Memory Maps for Targets” on page 2-98

Overview

As long as the processor on your custom board is from the TI C6000 DSP
family, you can use Target Support Package software to generate code for
your target.

The blocks for the peripherals in the C6000 DSP Library, such as the C6416
DSK ADC or C6713 DSK DAC blocks, are specific to their hardware and will
not work with your custom board. None of the board-specific blocks provided
by this toolbox work with custom hardware.

Custom hardware targeting currently supports all C6000 processors through
target preferences blocks, either specific to the processor, or a general custom
preferences block. These target preferences blocks are described briefly in
the following table

Target

Preferences

Block Description

Custom Board Provides access to the hardware set up for targeting
C6000 any C6000 processor-based board. Note that it does not

set any default values. When you add this block to a
model, you must set all the options on each available
pane—board information, memory mapping, and
section layout.

Targeting Custom Hardware

Target

Preferences

Block Description

C6416DSK Sets default values for targeting the C6416 DSK. After

you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6455DSK Sets default values for targeting the C6455 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6713 DSK Sets default values for targeting the C6713 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6713DSK Sets default values for targeting the C6713 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

C6727DSK Sets default values for targeting the C6727 DSK. After
you add this block to your model, you can modify the
default values as you require. Parameters in this block
are set to match the board attributes.

DM642EVM Sets default values for targeting the DM642 EVM.
After you add this block to your model, you can modify
the default values as you require. Parameters in this
block are set to match the board attributes.

These target preferences blocks provide a direct way for you to target boards
that are not specifically supported. Due to certain features related to memory
maps and other processor-specific attributes, custom hardware targeting only
works with the C6000 DSPs.

Several guidelines affect your targeting configuration decisions when you
decide to use custom targets and the custom target preferences block:

2-81

2 Targeting C6000™ DSP Hardware

2-82

Specify the memory allocation (memory mapping) using the Memory

and Sections panes on the C6000 Target Preferences dialog box. Set the
memory mapping for your target that best matches your hardware. For
example, if your custom target uses the C6713 processor, be sure your
memory configuration is the same as the one on the supported C6713 DSK,
such as has the same memory size, the same EMF settings, the same
memory sections, and the same cache organization.

To use on-chip memory only for your target, choose the Near_Calls setting
for the Memory model in the TI C6000 compiler options. To use external
memory that is specific to your board, choose the Far_Calls setting for the

Memory model. The other selection in the Memory model list offers a
combination of near and far allocation for data and aggregate data.

3 Do not use the existing ADC, DAC, DIP Switch, or LED blocks unless you
are quite sure that your hardware is identical to the appropriate EVM
or DSK in all important respects. Generally, the ADC, DAC, and other
target-specific blocks are design specifically for their designated targets and
can cause problems when you use them on hardware that is not identical.

4 Set the Overrun notification method in the TI C6000 runtime category
to Print_message when you use the overrun notification feature. If you
choose to use the LED notification option, verify that on your specialized
target you access the LEDs in exactly the same way, and the LEDs respond
in the same way, as the LEDs on the corresponding supported DSK or EVM.

To use one of the custom targets, create your model, add and configure
the Custom Board C6000 target preferences block, and then open the
Configuration Parameters dialog box for the model.

Typical Targeting Process

Generally, targeting hardware, or a development environment as it is called
by some, requires that you complete a series of processes that starts with
building your model and ends with generating code to suit your target.

1 Build the Simulink model of your algorithm or process to be converted to
code for your target.

Targeting Custom Hardware

2 Add target-specific blocks to your model, such as ADC and DAC blocks, and
configure the block parameters. (Skip this step when you are targeting a
processor on a custom board.)

3 Add a target preferences block to your model. Select a device-specific block,
such as the C6713DSK target preferences block. When none of the specific
blocks is appropriate, select the Custom Board C6000 target preferences
block. The top level of the model must contain a target preferences block.

4 Configure the options on the target preferences block to select the target,
map memory segments, allocate code and data sections to the memory
segments, and set other target-specific options.

5 Set the Simulink configuration parameters for your model. Notice that you
do this after you add the target preferences block to your model.

6 Build your model to your target.

Memory Maps

Memory maps are an essential part of targeting any processor or board.
Without the map, the code generation process cannot determine where
various features of the generated code, such as variables, data, and executable
code, reside on the target.

To discuss memory maps and configuring memory, a few terms need to be
defined:

® Memory map — Map of the memory space for a target system. The memory
space is partitioned into functional blocks.

®* memory segment — Memory partition that corresponds to a physical range
of memory on the target. The segment is named in some fashion, such as
IPRAM or SDRAM.

® Memory section — The smallest unit of an object file. This is a block of data
or code that, based on the memory map, resides in an area of contiguous
memory on the target and in the memory map. Sections of object files are
both distinct and separate. Memory sections come in two flavors:

2-83

2 Targeting C6000™ DSP Hardware

2-84

= Uninitialized sections that reserve memory space for uninitialized data.
One example of an uninitialized section is .bss. The .bss section reserves
space for variables that are not initialized.

= Initialized sections contain code and data. The .text (containing
executable code) and .data (containing initialized data) sections are
initialized.
® Memory management — Process of specifying the memory segments that
the various memory sections use for your application. A logical memory
map of the hardware memory results from the process of managing memory.

During code generation, the linker and assembler work to allocate your code
and data into the memory on your target according to the memory map
specifications you provide. For more information about memory utilization
and memory management, refer to the CCS IDE online help, using keywords
like memory map, memory segment, and section.

The compiler does not interact with the memory map. It makes no
assumptions about memory allocation and is not aware of the memory map.
As far as the C6000 compiler is concerned, the physical memory on your target
1s one continuous linear block of memory that is subdivided into smaller
blocks containing code, data, or both.

When you configure the block parameters for the Custom Board C6000 target
preferences block, you are setting up the memory map for your target. You
specify the memory segments that are defined and the contents of each
segment. You specify the sections, both named and default, and the segments
to which the sections are assigned.

These memory management functions are identical to the ones available
in the CCS IDE Configuration Tool.

Targeting a Custom Target

To use a board that has a TT C6000 processor but is not one of the supported
boards, use the Custom Board C6000 target preferences block by adding it to
your model.

Targeting Custom Hardware

Configuring the block parameters tell Simulink software, Target Support
Package software, and Real-Time Workshop software about your target
processor and how to generate code that will run on the target.

1 After you add the Custom Board C6000 target preferences block to your
model, open the block by selecting Edit > Open Block from the model
menu bar. This step opens the C6000 Target Preferences dialog box,
containing default values for all options. In the next steps you change the
options to specify features of your target processor and board.

2 Click Board Info to access the board information pane shown in the
following figure.

) Target Preferences’Custom Board o |EI|1|

Eloardlnfol Memary | Sections |

Eoard propetties

Board type: F ustom
Processar: IC5201 vl Addd newy . | Edit: ... Delete

CPU clock: 200 MHz

I Simulstor [Enable High-Speed RTDX

Code generation support

Operating system: INone 2 l

Eoard custom code

=
Include paths
Libraries
Intialize functions
Terminate functions
= =
Code Composer Studio Setup
CCE Board name: |F281 2 efdsp d
Processor name: ICpu 0 j

0K I Apply | Cancel | Help I

3 For Board type, enter Custom to tell the system you are targeting a board
that the target support package does not explicitly support.

2-85

2 Targeting C6000™ DSP Hardware

2-86

4 Select your target processor from the Processor list. Most of the C6000
family of DSP processors are on the list. If the one you need is not listed,
pick one that closely matches your target.

5 Set the actual CPU clock rate for the CPU on your target in CPU clock
speed (MHz). Report the clock speed of the processor on your target.
When you enter a value, you are not changing the CPU clock rate, you
are reporting the actual rate. If the value you enter does not match the
rate on the target, your model real-time results might be wrong, and code
profiling results will not be correct. You must enter the actual clock rate
the board uses. The rate you enter here does not change the rate on the
board. Setting CPU clock to the actual board rate allows the code you
generate to run correctly according to the actual clock rate of the hardware.

6 If your target is a simulator rather than a hardware target, select
Simulator.

7 To enable the target support package to connect to CCS IDE, select your
target from the CCS board name list. On this list you see the names of
the boards you have configured in the CCS Setup Utility. If your target
board does not appear on the list, start CCS Setup and add your board to
the System Configuration dialog box.

8 Select the processor to target from the CCS processor name list. For the
board you selected in CCS board name, CCS processor name lists all
the processors on the board. The list comes from the processors you added
to the board in the CCS Setup Utility.

Now you have completed the process of identifying your target to the target
support package and Real-Time Workshop software. While this process is
necessary, it represents only one small part of enabling you to generate code
to run on your custom board.

One very important part of targeting custom hardware is to provide the target
memory map configuration to the linker and assembler.

Memory and Sections panes on the C6000 Target Preferences dialog box
provide the controls required to specify how the linker and assembler arrange
the code, data, and variables on your target.

Targeting Custom Hardware

The following figures show the Memory and Sections panes with the default
values for all options.

Memory Pane

Target Preferences’,Custom Board

_oaranto | Wiy 1| Sectons |

oo

2-87

2 Tar:

geting C6000™ DSP Hardware

2-88

Sections Pane

) Target Preferences,Custom Board = |EI|5|
Bnard Info | Memary | |
Memoary placement of default sections
Default sections Flacement
-
avvitch IDFAM
hzsz
far
cinit
pinit
const
data
cio %
_EYSmem
stack
rdx data [=

Section description: € code

Memary placement of custom sections

Al |
Remove |
]
rame I.mw_isrambuff
Conterts: IAHY T l

Aftributes: |

Custom sections list

Placement

Dol

0K I Apply | Cancel | Help I

The information that follows describes the options on the panes in detail.
The Memory pane contains memory options in three areas:

¢ Physical Memory specifies the mapping for processor memory
¢ Heap specifies whether you use a heap and determines the size in words
e L2 Cache enables the L2 cache (where available) and sets the size in kB

Be aware that these options can affect the options on the Sections pane.
You can make selections here that change how you configure options on the

Sections pane.

Most of the information about memory segments and memory allocation is
available from the Code Composer Studio online help.

Targeting Custom Hardware

Physical Memory Options

This list shows the physical memory segments available on the board

and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory pane on
preconfigured target preferences blocks shows the memory segments available
on the board, but off of the processor. Target preferences blocks set default
starting addresses, lengths, and contents of the default memory segments.

The default memory segments for each processor and board are different.
For example:

¢ Custom boards based on C670x processors provide IPRAM and IDRAM
memory segments by default.

® (6713 DSK boards provide SDRAM memory segment by default

Name

When you highlight an entry on the Physical memory list, the name of the
entry appears here. To change the name of the existing memory segment,
select it in the Physical memory list and then type the new name here.

Note You cannot change the names of default processor memory segments.

To add a new physical memory segment to the list, click Add, replace the
temporary label in Name with the one to use, and press Return. Your new
segment appears on the list.

After you add the segment, you can configure the starting address, length,
and contents for the new segment. New segments start with code and data as
the type of content that can be stored in the segment (refer to the Contents
option).

Names are case sensitive. NewSegment is not the same as newsegment or
newSegment.

2-89

2 Targeting C6000™ DSP Hardware

2-90

Address

Address reports the starting address for the memory segment showing in
Name. Address entries are in hexadecimal format and limited only by the
board or processor memory.

When you are using a processor-specific preferences block, the starting
address shown is the default value. You can change the starting value by
entering the new value directly in Address when you select the memory
segment to change.

Length

From the starting address, Length sets the length of the memory allocated
to the segment in Name. As in all memory entries, specify the length in
hexadecimal format, in minimum addressable data units (MADUs). For the
C6000 processor family, the MADU is 8 bytes, one word.

When you are using a processor-specific preferences block, the length shown
1s the default value. You can change the value by entering the new value
directly in this option.

Contents

Contents describes the kind of program sections that you can store in the
memory segment in Name. As the processor type for the target preferences
block changes, the kinds of information you store in listed memory segments
can change. Generally, the Contents list contains these strings:

® Code — Allow code to be stored in the memory segment in Name.

® Data — Allow data to be stored in the memory segment in Name.

® Code and Data — Allow code and data to be stored in the memory segment
in Name. When you add a new memory segment, this is the default setting
for the contents of the new element.

You can add or use as many segments of each type as you need, within the
limits of the memory on your processor.

Targeting Custom Hardware

Add

Click Add to add a new memory segment to the target memory map. When
you click Add, a new segment name appears, for example NEWMEM1, in Name
and on the Physical memory list. In Name, change the temporary name
NEWMEM1 by entering the new segment name. Entering the new name, or
clicking Apply updates the temporary name on the list to the name you enter.

Remove

This option lets you remove a memory segment from the memory map. Select
the segment to remove in the Physical memory list and click Remove to
delete the segment.

Create Heap

If your processor supports using a heap, as does the C6713, for example,
selecting this option enables creating the heap and enables the Heap size
option. Create heap is not available on processors that either do not provide
a heap or do not allow you to configure the heap.

Using this option you can create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list and then
select Create heap to create a heap in the select segment. After you create
the heap, use the Heap size and Define label options to configure the heap.

The location of the heap in the memory segment is not under your control.
The only way to control the location of the heap in a segment is to make the
segment and the heap the same size. Otherwise, the compiler determines the
location of the heap in the segment.

Heap Size

After you select Create heap, this option lets you specify the size of the heap
in words. Enter the number of words in decimal format. When you enter
the heap size in decimal words, the system converts the decimal value to
hexadecimal format. You can enter the value directly in hexadecimal format
as well. Processors may support different maximum heap sizes.

2-91

2 Targeting C6000™ DSP Hardware

2-92

Define Label

Selecting Create heap enables this option that allows you to name the heap.
Enter your label for the heap in the Heap label option.

Heap Label

Selecting Define label enables this option. You use Heap Label to provide
the label for the heap. Any combination of characters is accepted for the label
except reserved characters in C/C++ compilers.

Enable L2 Cache

C621x, C671x, and C641x processors support an L2 cache memory structure
that you can configure as SRAM and partial cache. Both the data memory
and the program share this second-level memory. C620x DSPs do not support
L2 cache memory, and this option is not available when you choose one of
the C620x processors as your target.

If your processor supports the two-level memory scheme, this option enables
the L2 cache on the processor.

L2 Cache Size
After you enable the L2 cache, select the size of the cache from the list.

Sections Pane

Options on this pane let you specify where various program sections should go
in memory. Program sections are distinct from memory segments—sections
are portions of the executable code stored in contiguous memory locations.
Among the sections used generally are .text, .bss, .data, and .stack. Some
sections relate to the compiler, some to DSP/BIOS, and some can be custom
sections as you require.

For more information about program sections and objects, refer to the CCS
IDE online help. Most of the definitions and descriptions in this section
come from CCS IDE.

Targeting Custom Hardware

X

Board Inful Wlemary |

Cormpiler sections

| Description: ¢ code
cgwitch
bss
far
.cinit Placement: [IPRAM -

pinit LI

DEF/BIOS sections

| Description: Argument buffer

stack
-ghlinit

trcdata .
sysdata Placement: IIDRAM -I

b [

DERAEBICS ohject placement: IIDRAM '|

Customn sections
a | Mame: |_5E01
Flacement: IIDRAM 'I
LI Add | Rermuove |

OK | Apply | Cancel | Help |

In the pane shown in the preceding figure, you configure the allocation of
sections for Compiler, DSP/BIOS, and Custom needs.

This table provides brief definitions of the various kinds of sections in the
Compiler, DSP/BIOS, and Custom lists. All sections do not appear on both
lists. The string appears on the list shown in the table.

Description of the Section
String Section List Contents

.args DSP/BIOS Argument buffers

2-93

2 Targeting C6000™ DSP Hardware

Description of the Section

String Section List Contents

.bss Compiler Static and global C variables in the
code

.bios DSP/BIOS DSP/BIOS code if you are using
DSP/BIOS options in your program

.cinit Compiler Tables for initializing global and
static variables and constants

.cio Compiler Standard I/0 buffer for C programs

.const Compiler Data defined with the C qualifier
and string constants

.data Compiler Program data for execution

.far Compiler Variables, both static and global,
defined as far variables

.gblinit DSP/BIOS Load allocation of the DSP/BIOS
startup initialization tables section

.hwi DSP/BIOS Dispatch code for interrupt service
routines

.hwi_vec DSP/BIOS Interrupt Service Table

.obj DSP/BIOS Configuration properties that the
target program can read

.pinit Compiler Load allocation of the table of global
object constructors section.

.stack Compiler The global stack

.switch Compiler Jump tables for switch statements
in the executable code

.sysdata DSP/BIOS Data about DSP/BIOS

.sysinit DSP/BIOS DSP/BIOS initialization startup
code

.sysmem Compiler Dynamically allocated object in the

code containing the heap

2-94

Targeting Custom Hardware

Description of the Section
String Section List Contents

.text Compiler Load allocation for the literal
strings, executable code, and
compiler generated constants

.trcdata DSP/BIOS TRC mask variable and its initial
value section load allocation

You can learn more about memory sections and objects in your Code Composer
Studio online help.

Compiler Sections

During program compilation, the C6000 compiler produces both uninitialized
and initialized blocks of data and code. These blocks are allocated into
memory as required by the configuration of your system. On the Compiler
Sections list you find both initialized (sections that contain data or
executable code) and uninitialized (sections that reserve space in memory)
sections. The initialized sections are

® cinit
e _const
e _switch

® _text (created by the assembler)
These sections are uninitialized:

® _bss (created by the assembler)

e _far
e . stack
® .sysmem

Other sections appear on the list as well:

e _data (created by the assembler)

2-95

2 Targeting C6000™ DSP Hardware

2-96

® . cio

® .pinit

Note The C/C++ compiler does not use this section.

When you highlight a section on the list, Description shows a brief
description of the section. Also, Placement shows you where the section is
currently allocated in memory.

Description
Provides a brief explanation of the contents of the selected entry in the
Compiler Sections list.

Placement

Shows you where the selected Compiler Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location
from the Placement list. The list contains the memory segments as defined
in the physical memory map on the Memory pane. Select one of the listed
memory segments to allocate the highlighted compiler section to the segment.

DSP/BIOS Sections

During program compilation, DSP/BIOS produces both uninitialized and
initialized blocks of data and code. These blocks get allocated into memory as
required by the configuration of your system. On the DSP/BIOS sections list
you find both initialized (sections that contain data or executable code) and
uninitialized (sections that reserve space in memory) sections.

Description
Provides a brief explanation of the contents of the selected DSP/BIOS
Sections list entry.

Placement

Shows where the selected DSP/BIOS Sections list entry is allocated in
memory. You change the memory allocation by selecting a different location

Targeting Custom Hardware

from the Placement list. The list contains the memory segments available on
C6000 processors, and changes based on the processor you are using.

DSP/BIOS Object Placement

Distinct from the entries on the DSP/BIOS Sections list, DSP/BIOS objects
like STS or LOG, if your project uses them, are placed in the memory segment
you select from the DSP/BIOS Object Placement list. All DSP/BIOS objects
use the same memory segment. You cannot select the locations for individual
objects.

Custom Sections

When your program uses code or data sections that are not included in either
the Compiler Sections or DSP/BIOS Sections lists, you add the new
sections to this list. Initially, the Custom Sections list contains no fixed
entries, just a placeholder for a section for you to define.

Name

You enter the name for your new section here. To add a new section, click
Add. Then replace the temporary name with the name to use. Although the
temporary name includes a period at the beginning, you do not need to include
the period in your new name. Names are case sensitive. NewSection is not
the same as newsection, or newSection.

Placement

With your new section added to the Name list, select the memory segment
to which to add your new section. Within the restrictions imposed by the
hardware and compiler, you can select any segment that appears on the list.

Add

Clicking Add lets you configure a new entry to the list of custom sections.
When you click Add, the block provides a new temporary name in Name.
Enter the new section name to add the section to the Custom Sections list.
After typing the new name, click Apply to add the new section to the list. Or
click OK to add the section to the list and close the dialog box.

2-97

2 Targeting C6000™ DSP Hardware

Remove

To remove a section from the Custom Sections list, select the section to
remove and click Remove. The selected section disappears from the list.

To Create Memory Maps for Targets

Although each processor has memory map requirements, the C6000 DSP
family of processors share some memory features and not others. Details
of the memory sections and segments, as well as memory allocations and

limitations for each processor, are provided in your documentation for CCS
IDE and from TI.

To manage the memory on your processor, set the options within these panes
to specify the memory allocation to use. Recall that the memory map is

the result of the settings you provide for the options in the Memory and
Sections panes in the C6000 Target Preferences dialog box.

Unfortunately, each processor has different needs, and the differences make
it impossible to provide details about how you set the options for your target.
You determine, from your model and code

® What memory segments you require

® Which sections you need and where

® Whether you need custom memory segments and sections

® Where to begin each memory segment and how much memory to allot to
each segment

¢ Any other information that you need to set the options on the Memory

and Sections panes?

After you configure the options in the C6000 Target Preferences dialog box,
you are ready to set the Simulink configuration parameters for your model
and generate code.

2-98

Using Target Support Package™ Software with Real-Time Workshop® Embedded Coder™ Software

Using Target Support Package Software with Real-Time
Workshop Embedded Coder Software

In this section...

“Introduction” on page 2-99

“To Use the Real-Time Workshop® Embedded Coder Target File” on page
2-99

Introduction

To take advantage of Real-Time Workshop Embedded Coder software features,
you must migrate your models to a system target file called ccslink _ert.tlc.
This target is based on the embedded real-time target (ERT) used by
Real-Time Workshop Embedded Coder software. Other Embedded IDE Link
target files are based on the generic real-time target (GRT).

To use Real-Time Workshop Embedded Coder software with Target Support
Package software, you must choose the system target file ccslink ert.tlc,
available in the System Target File Browser.

If you simply choose the system target file ccslink_ert.tlc in the System
Target File Browser directly to change the target for the model, all the
Embedded IDE Link options are reset to default values by the switch. The
C6000-specific options are the same between the two system target files.

You can set your model to use this system target file the usual way, via the
System Target File Browser, available from the Real-Time Workshop
pane in the Configuration Parameters dialog box. However, when you use the
system target browser to switch your model between the ERT- and GRT-based
TT C6000 system target files, the TI C6000-specific options (the configuration
set) for the model are reset to default values.

To Use the Real-Time Workshop Embedded Coder
Target File
For setting up a new model to use the ERT-based target . tlc file.

2-99

2 Targeting C6000™ DSP Hardware

1 From your model menu bar, select Simulation > Configuration
Parameters.

2 Click Real-Time Workshop on the Select tree to access the Real-Time
Workshop software options.

3 Click Browse to open the System Target File Browser.

4 On the System Target File Browser, find and select the file
ccslink_ert.tlc.

5 Click OK.

2-100

Targeting with DSP/BIOS
Options

® “Introducing DSP/BIOS” on page 3-2

e “DSP/BIOS and Targeting Your TI C6000 DSP” on page 3-4

® “Code Generation with DSP/BIOS” on page 3-7

® “Profiling Generated Code” on page 3-11

e “Using DSP/BIOS with Your Target Application” on page 3-25

3 Targeting with DSP/BIOS Options

Introducing DSP/BIOS

Target Support Package software supports DSP/BIOS features as options
when you generate code for your target. In the sections that follow, you

can read more about what DSP/ BIOS is, how the target support package
incorporates the DSP/BIOS features into your generated code, and some ways
you might use the real-time operating system (RTOS) features of DSP/BIOS
in your application. Follow these links for more information on specific areas
that interest you, or read on for more details.

e “DSP/BIOS and Targeting Your TI C6000 DSP” on page 3-4

¢ “Code Generation with DSP/BIOS” on page 3-7

® “Profiling Generated Code” on page 3-11

¢ “Using DSP/BIOS with Your Target Application” on page 3-25

As a part of the Texas Instruments eXpressDSP™ technology, TI designed
DSP/BIOS to include three components:

e DSP/BIOS Real-Time Analysis Tools — use these tools and windows within
Code Composer Studio IDE to view your program as it executes on the
target in real-time.

e DSP/BIOS Configuration Tool — enables you to add and configure any and
all DSP/BIOS objects that you use to instrument your application. Use this
tool to configure interrupt schedules and handlers, set thread priorities,
and configure the memory layout on your DSP.

e DSP/BIOS Application Program Interface (API) — lets you use C or
assembly language functions to access and configure DSP/BIOS functions
by calling any of over 150 API functions. Target Support Package software
uses the API to access DSP/BIOS.

You link these components into your application, directly or indirectly
referencing only functions you need for your application to run efficiently
and optimally. Only functions that you specifically reference become part of
your code base. Others are not included to avoid adding unused code to your
project. In addition, after you add one or more functions from DSP/BIOS, the
configuration tool help you disable feature you do not need later, letting you
optimize your program for speed and size.

Introducing DSP/BIOS

For details about DSP/BIOS and what it can do for your applications, refer to
your CCS IDE and DSP/BIOS documentation from Texas Instruments.

3-3

3 Targeting with DSP/BIOS Options

DSP/BIOS and Targeting Your TI C6000 DSP

In this section...

“Introduction” on page 3-4

“DSP/BIOS Configuration File” on page 3-5
“Memory Mapping” on page 3-6

“Hardware Interrupt Vector Table” on page 3-6

“Linker Command File” on page 3-6

Introduction

When you use Real-Time Workshop software to generate code from the
Simulink model of your digital signal processing application, you can choose to
include the DSP/BIOS features provided by Target Support Package software
in your generated code.

By electing to include DSP/BIOS in your generated project, the target
support package adds a DSP/BIOS configuration file (with the filename
modelname.tcf) to your project, and adds the following files as well:

® modelnamecfg.s62 — contains the DSP/BIOS objects required by your
application and the vector table for the hardware interrupts.

® modelnamecfg.h62 — the header file for modelnamecfg.s62.

® modelnamecfg.h — model configuration header file.

® modelnamecfg_c.c — source code for the model.

® modelnamecfg.cmd — the linker command file for the project. Adds the
required DSP/BIOS libraries and the library RTS6201.1ib, or the run-time
support library for your target.

The executable code and source code you generate when you use the DSP/BIOS
option are not the same as the code generated without DSP/BIOS included.

Rather than having you incorporate the DSP/BIOS files manually when you
create your application, as you would if you used CCS IDE alone, or another
text editor, the target support package starts from your Simulink model and

DSP/BIOS and Targeting Your Tl C6000™ DSP

adds the DSP/BIOS files automatically. As it adds the files, the support
package

¢ Configures the DSP/BIOS configuration file for your model needs

® Sets up the objects you need to analyze your program while it runs on
your target

¢ Handles memory mapping to optimize your code based on the blocks in
your model

DSP/BIOS Configuration File

DSP/BIOS projects all have a file with the extension .tcf. The file contains
the DSP/BIOS configuration information for your project, in the form of
objects for instrumenting and scheduling tasks in the program code. Included
in any DSP/BIOS project might be

® Log (LOG) objects for logging events and messages (replace the *printf
statements, for instance)

e Statistics (STS) objects for tracking the performance of your code

® A clock (CLK) object for configuring the clock on your target, and various
memory functions

® Hardware and software interrupt (HWI, SWI) objects that control program
execution

¢ Other objects you use to meet your needs

Your TI DSP/BIOS documentation can provide all the details about the objects
and how to use them. In addition, your installed software from TI includes
tutorials to introduce you to using DSP/BIOS in projects.

Not all of the DSP/BIOS objects get used by the code you generate from Target
Support Package software. In the next sections, you learn about which objects
the targeting software uses and how. Of course, you can still add more objects
to your code through CCS IDE. Note, however, that if you add additional
DSP/BIOS objects beyond those provided by the target support package, you
lose your additions when you regenerate your code from your Simulink model.

3 Targeting with DSP/BIOS Options

Memory Mapping

Memory mapping that takes place in the linker command file now appears
in the MEM object in the DSP/BIOS configuration file. Your memory sections,
such as the DATA_MEM assignments and definitions, move to the MEM object,
as do the memory segments. After completing this conversion, the memory
assignment portions of your non-DSP/BIOS linker command file are not
necessary in the linker command file.

Hardware Interrupt Vector Table

In non-DSP/BIOS project, the assembly language file vector.asm in your
project defines the hardware interrupt vector table. This file defines which
interrupts your project uses and what each one does.

When you choose to use DSP/BIOS capabilities, the interrupts defined in the
vector table move to the Hardware Interrupt Service Routine Manager in the
CCS Configuration Tool. With all of your interrupts now defined as Hardware
Interrupts (HWI) in the Configuration Tool, your project does not need
vector.asm so the file does not appear in your DSP/BIOS enabled projects.

Linker Command File

After migrating your memory sections and segment, and your hardware
interrupt vector table to the configuration file, building with the DSP/BIOS
option creates a compound linker command file. Since DSP/BIOS allows only
one command file per project, and your linker file may comprise command
options that did not relocate the DSP/BIOS configuration, Target Support
Package software uses compound command files. Compound command files
work to let your project use more than one command file.

By starting your original linker command file with the statement

"-1modelnamecfg.cmd"

added as the first line in the file, your DSP/BIOS enabled project uses both
your original linker command file and the DSP/BIOS command file. You get
the features provide by DSP/BIOS as well as the custom command directives
you need.

Code Generation with DSP/BIOS

Code Generation with DSP/BIOS

In this section...

“Overview” on page 3-7

“Generated Code Without and With DSP/BIOS” on page 3-7

Overview

While generating code that includes the DSP/BIOS options is straightforward,
changes occur between code that does not include DSP/BIOS and code that
does. Two things change when you generate code with DSP/BIOS—files are
added and removed from the project in CCS IDE, and DSP/BIOS objects
become part of your generated code. With these in place, you can use the
DSP/BIOS features in CCS IDE to debug your project, as well as use the
profiling option in Target Support Package software to check the performance
of your application running on your target.

To generate code that includes DSP/BIOS options, open the Target
Preferences block and select DSP/BIOS from the Operating system list on
the Board Info pane.

Generated Code Without and With DSP/BIOS

The next two figures show the results of generating code without and with the
DSP/BIOS option enabled in the Simulation Parameters dialog.

3-7

3 Targeting with DSP/BIOS Options

3-8

Example — ¢6713dskwdnoisf.pjt code Generated Without
DSP/BIOS

When you create your project in CCS IDE, the folder structure looks like this.

Q Files
-2 =EL files
=2 Projects
Eﬁ c6711dskwdnoisk.pjt
----- 6711 dskywdnoisf, crnd
----- |:| DSPBIOS Config
----- ([Generated Files
----- (£ Include
=[] Libraries
..... #] dsp_rt_c&710.lb
..... £] dspeze.lib
..... (2] rhw_rt_ce710.0b

¥ c6711dskwdnaist.c
671 1dskwdnoisf_data.c
----- E c6711dskwdnaist_main.c
E My _cETxx_bsl.c

E MW AT _csl.c

%] rt_sim.c

----- E veckars, asm

Code Generation with DSP/BIOS

Example — ¢6713dskwdnoisf.pjt Code Including DSP/BIOS

If you now create a new project that includes DSP/BIOS, the folder structure
for your project changes to look like the following figure.

? Files
=23 GEL files
= "j Projects
=gz €6713dskwdnoisf.pjt (CustomMW)
(L] Dependent Projects
;;I Documents
=-£3 DSP/BIOS Config
““m c6713dskwdnoisf, tcf
=3 Generated Files
Fj 67 13dskwdnoisfcfg.s62
!ﬂ c6713dskwdnoisfcfg_c.c
F-[23 Indude
=3 Libraries
[#] csl&713.lib
|#] rts&6700.lib
=l "j Source
[#] 2chabank_fr_df dd_rt.c
!ﬂ 2chsbank_df dd_rt.c
|#] c6713dskwdnoisf.c
[] c6713dskwdnoisf_data.c
|#] c6713dskwdnaisf_main.c
!ﬂ MW _chxxx_bsl.c
!ﬂ MW _chxxx_csl.c
I'j €67 13dskwdnoisf.cmd

|5

4

Added File Description

modelname.tcf Contains the DSP/BIOS objects required by your
application, and the vector table for the hardware
interrupts

modelnamecfg.s62 | Shows all the included files in your project, the
variables, the DSP/BIOS objects, and more in this
file generated from the . tcf file

modelnamecfg.h62 | The header file for modelnamecfg.s62

modelnamecfg.h Model configuration header file

3-9

3 Targeting with DSP/BIOS Options

3-10

Added File

Description

modelnamecfg_c.c

Source code for the model

modelnamecfg.cmd

The linker command file for the project. Adds

the required DSP/BIOS libraries and the library
RTS6201.1ib or the run-time support library for your
target.

Notice that the new folder includes some new files, shown in the next table.

With DSP/BIOS functions enabled for your project, the following files no
longer appear in your project.

Filename

Description

vectors.asm

Defines the hardware interrupts (HWI) used
by interrupt service routines on the processor.
This file is removed after all of the hardware
interrupts appear in the HWI section of the
Configuration Tool.

Original linker
command
file—modelname.cmd

Assigns memory sections on the processor. This
file 1s removed if the SECTION directive is empty
because all of the section assignments moved to
the configuration file. Otherwise, include call to
the DSP/BIOS command file.

Some *.1ib files

Provide access to libraries for the processor, and
peripherals. These files are removed if their
contents have been incorporated in the new
compound linker command file.

When you investigate your generated code, notice that the function main
portion of modelname_main.c includes different code when you generate
DSP/BIOS-enabled source code, and modelname_main.c incorporates one or

more new functions.

Profiling Generated Code

Profiling Generated Code

In this section...

“Overview” on page 3-11

“Profiling Subsystems” on page 3-12

“Details About Timing and Profiling” on page 3-13
“Profiling Multitasking Systems” on page 3-14

“The Profiling Report” on page 3-16

“Interrupts and Profiling” on page 3-17

“Reading Your Profile Report” on page 3-18

“Definitions of Report Entries” on page 3-19

“Profiling Your Generated Code” on page 3-21

“To Enable Profiling for Your Generated Code” on page 3-22

“To Create Atomic Subsystems for Profiling” on page 3-22

Overview

When you use Target Support Package software to generate code that
incorporates the DSP/BIOS options, you can easily profile your generated
code to gauge performance and find bottlenecks.

By selecting Profile real-time execution in the Real-Time Workshop
software options, Real-Time Workshop software inserts statistics (STS)
object instrumentation at the beginning and end of the code for each atomic
subsystem in your model. (For more about STS objects, refer to your
DSP/BIOS documentation from Texas Instruments.)

After your code has been running for a few seconds on your target, you can
retrieve the profiling results from your target and display the information

in a custom HTML report.

Code profiling works only on atomic subsystems in your model. To allow
the target support package to profile your model when you build it in

3-11

3 Targeting with DSP/BIOS Options

3-12

Real-Time Workshop software, you convert segments of your model into
atomic subsystems using Create subsystem.

By designating subsystems of your model as atomic, you force each subsystem
to execute only when all of its inputs are available. Waiting for all the
subsystem inputs to be available before running the subsystem allows the
subsystem code to be profiled as a contiguous segment.

To enable the profile feature for your Simulink model, select Simulation >
Configuration Parameters from the model menu bar. In the Configuration
Parameters dialog box, select Real Time Workshop > Embedded IDE
Link. Under Code Generation, enable Profile real-time execution.

Profiling Subsystems

Nested subsystems are profiled as part of their parent systems—the execution
time reported for the parent subsystem includes the time spent in any profiled
child subsystems. You cannot profile child subsystems separately.

For models that include multiple sample times, one or more subsystems

in your model might not be included in the profiling process. When your
model 1s configured to use single-tasking mode, all atomic subsystems in
your model are profiled and appear in the report. When your model uses
multitasking (refer to your Real-Time Workshop documentation for more
about multitasking models) profiling applies only to single-rate subsystems
that execute at the base rate of your model. This limitation arises because all
of the generated code segments must execute contiguously for the profiling
timing measurements to be correct. Setting the Tasking mode for periodic
sample times to Auto in the model configuration parameters does not
guarantee contiguous execution for all code segments and subsystems.

Notice two things in your code:

e STS objects are added to the generated code
® A generated DSP/BIOS configuration gets added to the project configuration
file

Target Support Package software inserts and configures these objects
specifically for profiling your code. You do not have to make changes to the

Profiling Generated Code

STS objects. To see the statistics objects in use, download your generated
application to your board, select DSP/BIOS > Statistics View from the
menu bar in CCS IDE, and run the board for a few seconds. You see the
statistics being accumulated by the STS objects.

Details About Timing and Profiling

The profiling system in Target Support Package software relies on DSP/BIOS
STS objects and the CLK_gethtime () function. CLK_gethtime () returns

a high resolution timing counter that enables profiling to measure the
instruction cycles the CPU spends executing code segments. To understand
profiling, you need to understand how CLK_gethtime () works.

This is how the system determines the value of CLK_gethtime:
CLK _gethtime() return val = CLK getltime() *PRDO + CNTO

PRDO and CNTO are timer O period and counter registers. In code generation,
BIOS allocates timer 0 as a system timer and set the timer to generate a
timer interrupt every 1ms. CLK_getltime() in turn returns the number of
BIOS system timer interrupts. By this logic, PRDO is set to the number of
CPU clock cycles divided by the number of low resolution clock cycles that is
equivalent to 1 millisecond in absolute time (8 low resolution clock cycles for
C64x processors, for example).

The key point here is that function CLK_gethtime() relies on the

CLK getltime() function which in turn relies on a timer O interrupt. If
your process globally disables interrupts during code execution for more
than 1 PRDO instruction cycle, one or more timer interrupts can be missed,
resulting in a situation where both CLK_getltime () and CLK gethtime()
can be inaccurate.

CLK _getltime () will be inaccurate because it does not report the correct time
value. But it is always positive. The situation is worse for CLK_gethtime ()
It may report negative timing around code segments where interrupts are
disabled:

A = CLK_gethtime();
IRQ_globalDisable();
{

Code segment;

3-13

3 Targeting with DSP/BIOS Options

3-14

}
IRQ_globalEnable();

B = CLK gethtime();

In this situation, if interrupts are disabled longer than 1ms around the code
segment to be profiled, B might be smaller than A since CTNO might have
rolled over. So the count of the instruction cycles computed as (B - A) might
be negative.

Correcting Inaccurate Profile Information Due to Timing

One way to correct problems in profiling caused by the disabled interrupts is
to set the DSP/BIOS system timer interrupt to occur less frequently. As noted
earlier, the timer is set to 1 millisecond by default.

You can change setting manually after you generate code for your project.
Here are the steps to use to reset the DSP/BIOS system timer interval.

1 Open the .tcf file for the project.
2 Select Scheduling > CLK Clock Manager.
3 Right-click CLK Clock Manager to set the properties for the clock manager.

4 Change the Microseconds/Int value from the default 1000.00
microseconds to something larger, for example, 5000.00 microseconds.

5 Save the project.

This timing change reduces the chances of missing a system timer interrupt.
If you do this and profile the code again, the profiling results are usually
accurate. You can verify that if you reduce the system timer interrupt interval
further, to perhaps 100 microseconds, you get less and less accurate profiling
results, possibly reporting negative timing values.

Profiling Multitasking Systems

For a multitasking system, DSP/BIOS STS objects cannot reliably measure
the time the processor spends in all tasks. When tasks can be preempted
by other tasks (a result of multitasking operation), the profile timing
measurements may be incorrect. For this reason, Target Support Package

Profiling Generated Code

software includes profiling instrumentation for atomic systems that run at
the base sample rate only.

When you run the same model in single tasking mode, you can get the timing
measurements for all the systems in your model for one iteration:

1 Select Simulation > Configuration Parameters from the model menu
bar.

2 Under Tasking on the Solver pane, select SingleTasking for Tasking
mode for periodic sample times.

3 Rebuild and execute your model on your C6000 hardware.

The program will probably overrun immediately since single tasking mode
requires that all tasks complete within the base sample time which usually
does not happen. However, all systems and subsystems do run once before the
program terminates. This allows you to obtain profiling results for all systems.

When the overrun occurs, click Halt in CCS IDE to stop DSP/BIOS operation.

Then, enter CCS_Obj.profile('report') at the MATLAB prompt to report
the statistics measurements.

Now you can view the timing measurements for each subsystem. Keep in
mind that the percentages are given relative to the base sample time, so you
must do some arithmetic to figure out whether a given system will fit in its
available time interval. For instance, if your base sample time is 1 second,
subsystem A executes every 3 seconds, the base-rate task takes 0.1 seconds
to run, and A takes 2.5 seconds to run, the system should execute without
overruns in multitasking mode.

If you change the overrun action option from its default setting of Notify
and halt to Notify and continue or None, you can get measurements for
multiple iterations of the system. Also, you will be able to request the profile
report without first halting the CPU.

3-15

3 Targeting with DSP/BIOS Options

3-16

The Profiling Report

To help you measure subsystem performance, Target Support Package
software provides a custom report that analyzes and displays the profile
statistics. The report shows you the amount of time spent computing each
subsystem, including Outputs and Update code segments, and provides links
that open the corresponding subsystem in the Simulink model.

To view the profiling report, enter

profile(cc, 'report')

at the MATLAB prompt, where cc is the handle to your target and CCS IDE,
and report is one of the input arguments for profile.

When you generate the report, the target support package stores the report in
your code generation working folder, something like modelname.c6000. rtw,
with the name profileReport.html.

If the MATLAB software cannot find your code generation folder, the profile
reports is stored in your temporary folder, tempdir. To locate your temporary

folder, enter

tempdir

at the MATLAB command prompt.

Caution Each time you run the profiling process, the target support package
replaces your existing report with a newer version. To save earlier reports,
rename and save the report before you generate a new one, or change your
destination temporary folder in the MATLAB workspace.

You must invoke profile after your Real-Time Workshop build, without
clearing MATLAB memory between operations, so that stored information
about the model is still available to the report generator. If you clear your
MATLAB memory, information required for the profile report gets deleted and
the report does not work properly. When this occurs, and if you have a CCS
IDE project that was previously created with Real-Time Workshop software,

Profiling Generated Code

you must repeat the Real-Time Workshop build to see the subsystem-based
profile analysis in the report.

Trace each subsystem presented in the profile report back to its corresponding
subsystem in your Simulink model by clicking a link in the report. (The
mapping from Simulink subsystems to generated system code is complex

and thus not detailed here.) Inspect your generated code, particularly
modelname.c, to determine where and how Simulink and Real-Time
Workshop software implemented particular subsystems.

Within the generated code, you see entries like the following that define STS
objects used for profiling.

STS_set(&stsSysO_Output, CLK gethtime());
or
STS_delta(&stsSysO_Output, CLK _gethtime());

This pair of code examples perform the profiling of the code section that lies
between them in modelname.c.

In CCS IDE, STS objects show up in the Statistics Object Manager section
under Instrumentation in the modelname.tcf file. Double-click the file
modelname.tcf in the CCS IDE tree view to open the file and see the sections.

In some cases, Real-Time Workshop software may have pruned unused data
paths, causing related performance measurements to become meaningless.
Reusable system code, or code reuse, where a single function is called from
multiple places in the generated code, can exhibit extra measurements in
the profile statistics, while the duplicate subsystem may not show valid
measurements.

Interrupts and Profiling

Although there are STS objects that measure the execution time of the
entire md10Outputs and mdlUpdate functions, those measurements can be
misleading because they do not include other segments of code that execute
at each interrupt. Statistics for the SWI are used when calculating the
headroom (the difference between the number of CPU cycles your process
requires to complete and the number available for the process to complete,

3-17

3 Targeting with DSP/BIOS Options

3-18

which does not include the small overhead required for each interrupt. Note
that profiling of multitasking systems does not measure the headroom. In
addition, multitasking profiling does not use the SWI statistics.

To measure most accurately the overall application CPU usage, consider the
DSP/BIOS IDL statistics, which measure time spent not doing application
work. Your DSP/BIOS documentation from TI provides details about the
various DSP/BIOS objects in the tcf file.

The interrupt rate for a DSP/BIOS application created by Target Support
Package software is the fastest block execution rate in the model. The
interrupt rate is usually, but not always, the same as the codec frame rate.
When there is an upsampling operation or other rate increasing operation in
your model, interrupts are triggered by a timer (PRD) object at the faster rate.
You can determine the effective interrupt rate of the model by inverting the
interrupt interval reported by the profiler.

Profiling subsystems that contain “blocking” device drivers, such as the
ADC/DAC blocks and C6000 UDP Receive blocks may produce inaccurate and
misleading results, raising values for Max time spent in this subsystem
per interrupt and Max percent of base interval by many orders of
magnitude. To avoid this problem, design subsystems to isolate blocking
device drivers from algorithmic and other processing functions, and configure
profiling appropriately.

Reading Your Profile Report

After you have the report from your generated code, you need to interpret
the results. This section provides a link to sample report from a model and
explains each entry in the report.

Sample of a Profile Report

When you click Sample Profile Report, the sample report opens in a new Help
browser window. This opens the sample report in a new window so you can
read the report and the descriptions of the report contents at the same time.
Running the model c6713dskwdnoisf with DSP/BIOS generates the sample
profile report. The next sections explain the headings in the report—what
they mean and how they are measured (where that applies).

Profiling Generated Code

Report Heading Information

At the beginning of the report, profiling provides the name of the model you
profiled, the target you used, and the date of the report. Since the report
changes each time you run it, the date can be an important means of tracking
model development.

Report Subsections and Contents

Within the body of your profile report, sections report the overall performance
of your generated code and the performance of each atomic subsystem.

Report Heading Description

Timing Constants Shows you the base sample time in your model
(=1/base rate in Hz) and the CPU clock speed used
for the analysis.

Profiled Simulink Presents the statistics for each profiled subsystem
Subsystems separately, by subsystem. Each listing includes
the STS object name or names that instrument
the subsystem.

STS Objects Lists every STS object in the generated code and
the statistics for each. DSP/BIOS uses these
objects to determine the CPU load statistics. For
more information about STS objects, refer to your
DSP/BIOS documentation from TI.

STS objects that are associated with subsystem profiling are configured for
host operation at 4*x, reflecting the numerical relationship between CPU
clock cycles and high-resolution timer clicks, x. STS Average, Max, and
Total measurements return their results in counts of instructions or CPU
clock cycles.

Definitions of Report Entries

In the following sections, we provide definitions of the entries in the profile
report. These definitions help you decipher the report and better understand
how your process is performing.

3-19

3 Targeting with DSP/BIOS Options

3-20

System name

Provides the name of the profiled model, using the form targetnameprofile.
targetname is the processor or board assigned as the target, via the target
preferences block.

Number of Iterations Counted

The number of interrupts that occurred between the start of model execution
and the moment the statistics were obtained.

CPU Clock Speed

The instruction cycle speed of your digital signal processor. On the C6713
DSK, you can adjust this speed to one of four values, where 100 MHz is the
default—25, 33.25, 100, 133 MHz. If you change the speed to something
other than the default setting of 100 MHz, you must specify the new speed
in the Real-Time Workshop software options. Use the Current C6713DSK
CPU clock rate option on the TIC6000 runtime category on the Real-Time
Workshop tab.

Set at a fixed 150 MHz, you cannot change the CPU clock rate on the C6713
DSK. You do not need to report the setting in the Real-Time Workshop
software options.

Maximum Time Spent in This Subsystem per Interrupt

The amount of time spent in the code segment corresponding to the
indicated subsystem in the worst case. Over all the iterations measured,
the maximum time that occurs is reported here. Since the profiler only
supports single-tasking solver mode, no calculation can be preempted by a
new interrupt. All calculations for all subsystems must complete within one
interrupt cycle, even for subsystems that execute less often than the fastest
rate.

Maximum Percent of Base Interval

The worst-case execution time of the indicated subsystem, reported as a
percentage of the time between interrupts.

Profiling Generated Code

STS Objects

Profiling uses STS objects to measure the execution time of each atomic
subsystem. STS objects are a feature of the DSP/BIOS run-time analysis
tools, and one STS object can be used to profile exactly one segment of code.
Depending on how Real-Time Workshop software generates code for each
subsystem, there may be one or two segments of code for the subsystem;
the computation of outputs and the updating of states can be combined or
separate. Each subsystem is assigned a unique index, i. The name of each
STS object helps you determine the correspondence between subsystems and
STS objects. Each STS object has a name of the form

stsSysi_segment

where i is the subsystem index and segment is Output, Update, or
OutputUpdate. For example, in the sample profile report shown in the
next section, the STS objects have the names stsSys1_OutputUpdate, and
stsSys2_OutputUpdate

Profiling Your Generated Code

Before profiling your generated code, you must configure your model and
Real-Time Workshop software to support the profiling features in Target
Support Package software. Your model must use DSP/BIOS features for
profiling to work fully.

The following tasks compose the process of profiling the code you generate.

1 Enable DSP/BIOS for your code.

2 Enable profiling in the Real-Time Workshop software.
3 Create atomic subsystems to profile in your model.

4 Build, download, and run your model.

5 Use profile to view the MATLAB profile report.

To demonstrate profiling generated code, this procedure uses the wavelet
denoising model c6713dskwdnoisf.mdl that is included with Target Support
Package demo programs. If you are using the C6713 DSK as your target, use

3-21

3 Targeting with DSP/BIOS Options

3-22

the model C6713dskwdnoisf throughout this procedure. Simulators work as
well, just choose the appropriate model for your simulator.

Begin by loading the model, entering

c6713dskwdnoisf

at the MATLAB prompt. The model opens on your desktop.

To Enable Profiling for Your Generated Code
Recall that you must use DSP/BIOS in your code to use profiling.

To enable the profile feature for your Simulink model, select Simulation >
Configuration Parameters from the model menu bar. In the Configuration
Parameters dialog box, select Real Time Workshop > Embedded IDE
Link. Under Code Generation, enable Profile real-time execution.

To Create Atomic Subsystems for Profiling

Profiling your generated code depends on two features—DSP/BIOS being
enabled and your model having one or more subsystems defined as atomic
subsystems. To learn more about subsystems and atomic subsystems, refer to
your Simulink documentation in the Help browser.

In this tutorial, you create two atomic subsystems—one from the Analysis
Filter Bank block and a second from the Soft Threshold block:

1 Select the Analysis Filter Bank block. Select Edit > Create subsystem
from the model menu bar. The name of the block changes to subsystem.
Repeat for the Soft Threshold block.

2 To convert your new subsystems to atomic subsystems, right-click on each
subsystem and choose Subsystem parameters... from the context menu.

3 In the Block Parameters: Subsystem dialog for each subsystem, select
the Treat as atomic unit option. Click OK to close the dialog. If you
look closely you can see that the subsystems now have heavier borders to
distinguish them from the other blocks in your model.

Profiling Generated Code

To Build and Profile Your Generated Code

You have enabled profiling in your model and configured two atomic
subsystems in the model as well. Now, use the profiling feature in the target
support package to see how your code runs and check the performance for
bottlenecks and slowdowns as the code runs on your target.

Caution Do not click on any other open model while you are profiling your
model. Clicking on another open model can cause profiling to fail with an
error message like “Invalid Simulink object specifier.”

1 Select Tools > Real-Time Workshop > Build Model.

If you did not use the Real-Time Workshop software options to automate
model compiling, linking, downloading, and executing, perform these tasks
using the Project options in CCS IDE.

Allow the application to run for a few seconds or as long as necessary to
execute the model segments of interest a few times. Then stop the program.

2 Create a link to CCS IDE by entering
cc = ticcs;
at the MATLAB prompt.
3 Enter

profile(cc, 'report')

at the prompt to generate the profile report of your code executing on
your target.

The profile report appears in the Help browser. It should look very much like

the following sample report; your results may differ based on your target
and the settings in the model.

3-23

3 Targeting with DSP/BIOS Options

Profile Report

Simulink model: c6416dskprofile.mdl
Target: C6416DSK

Report of profile data from Code Composer Studio (tn1)
XO0-X{-2005 17:27:27

|»

Timing constants

Base sample time | 250 ms

CPU Clock speed! | 720 MHz

Profiled Simulink Subsystems

System name c6416dskprofile

STS object stsSys2_OutputUpdate
)-Iaf time spent in this subsystem 1493 s

per interrupt

Max percent of base interval 0.00597%

Number of iterations counted 144

System name c6416dskprofile/Subsystem1
STS object stsSysl_OutputUpdate
).Ia; time spent in this subsystem 128

per interrupt

Max percent of base interval 0.00512%

Number of iterations counted 144

3-24

Using DSP/BIOS with Your Target Application

Using DSP/BIOS with Your Target Application

Enabling DSP/BIOS When You Generate Code

For any code you generate using Real-Time Workshop software and Target
Support Package software, you have the option of including DSP/BIOS
features automatically when you generate the code. Incorporating the
features requires you to select one option in the Target Preferences/Custom
Board block—DSP/BIOS for the operating system.

1 Open the model to use to generate code.
2 Open the Target Preferences block in your model.

3 On the Board Info pane, select DSP/BIOS for Operating system under
the Code Generation options.

3-25

3 Targeting with DSP/BIOS Options

[S]untitled /C6713D5K [%]

Board | MEmary I Section I DSP;’BIOS' =

—Board Properties
Board Type: ICEJISDSK
Processor: |C6713 | Add Mew.. | Delztz

CPU Clock: |223 MHz

—Board Support

Operating Systerm: [DSP/BIOS 'I

Source files
Include paths
Libraries

= Initialize functions

- Terminate functions

—IDE Support.

C6713 DSK, CPU_1 Get from IDE|

=]

Ok, | Cancel | Help | Ay |

4 As shown in the figure, select DSP/BIOS for Operating system.

3-26

Using the C62x and C64x
DSP Libraries

e “About the C62x and C64x DSP Libraries” on page 4-2
¢ “Fixed-Point Numbers” on page 4-5
¢ “Building Models” on page 4-10

4 Using the C62x and Cé4x DSP Libraries

About the €C62x and C64x DSP Libraries

In this section...
“C62x DSP Library” on page 4-2
“C64x DSP Library” on page 4-3

“Supported Platforms” on page 4-3

“Characteristics Common to C62x and C64x Library Blocks” on page 4-4

C62x DSP Library

Blocks in the C62x DSP library correspond to functions in the Texas
Instruments TMS320C62x DSP Library assembly-code library, which target
the TI C62x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink software before generating

code. Once you develop your model, you can invoke Real-Time Workshop
software to generate code that is optimized to run on C6713 DSK development
platforms or C62x hardware. (Fixed-point processing on C67x hardware is
identical to C62x fixed point hardware and processing so you can develop on
the C67x for the C62x.) During code generation, each C62x DSP Library block
in your model is mapped to its corresponding TMS320C62x DSP Library
assembly-code routine to create target-optimized code.

C62x DSP Library blocks generally input and output fixed-point data types.
Chapter 6, “Block Reference” discusses the data types accepted and produced
by each block in the library. “Fixed-Point Numbers” on page 4-5 gives a
brief overview of using fixed-point data types in Simulink software. For an
in-depth discussion of fixed-point data types, including issues with scaling and
precision when you perform fixed-point operations, refer to your “Fixed-Point
Toolbox” documentation.

You can use C62x DSP Library blocks with certain blocks from the Signal
Processing Blockset software and Simulink software. To learn more about
creating models that include both C62x DSP Library blocks and blocks from
other blocksets, refer to “Building Models” on page 4-10.

About the C62x and Cé4x DSP Libraries

C64x DSP Library

Blocks in the C64x DSP library correspond to functions in the Texas
Instruments TMS320C64x DSP library assembly-code library, which target
the TI C64x family of digital signal processors. Use these blocks to run
simulations by building models in Simulink software before generating
code. Once you develop your model, you can invoke Real-Time Workshop
software to generate code that is optimized to run on the C6416 DSK
development platform or other C64x hardware. During code generation,
each C64x DSP Library block in your model is mapped to its corresponding
TMS320C64x DSP Library assembly-code routine to create target-optimized
code.

C64x DSP Library blocks generally input and output fixed-point data types.
Chapter 6, “Block Reference” discusses the data types accepted and produced
by each block in the library. “Fixed-Point Numbers” on page 4-5 gives a
brief overview of using fixed-point data types in Simulink software. For an
in-depth discussion of fixed-point data types, including issues with scaling and
precision when you perform fixed-point operations, refer to your Fixed-Point
Toolbox™ documentation.

You can use C64x DSP Library blocks with certain blocks from the Signal
Processing Blockset software and Simulink software. To learn more about
creating models that include both C64x DSP Library blocks and blocks from
other blocksets, refer to “Building Models” on page 4-10.

Note While you can use C62x blocks on C64x targets, the generated code is
not optimal for the C64x target. Using the appropriate C64x block creates
better optimized code. (Target Support Package software generates a warning
message when you try to do this but allows you to use the block.)

Supported Platforms

The C62x and C64x DSP libraries can be used with the platforms listed in the
following table:

4 Using the C62x and Cé4x DSP Libraries

4-4

Library Supported platforms
C62x C62x, C67x, C67x+, C64x, C64x+
C64x C64x, C64x+

Characteristics Common to C62x and C64x Library
Blocks

The following characteristics are common to all C62x and C64x DSP Library
blocks:
e All blocks inherit sample times from driving blocks.

® The blocks are single rate.

¢ Block filter weights and coefficients are tunable, but not in real time. Other
block parameters are not tunable.

e All blocks support discrete sample times. Individual block reference pages
indicate blocks that also support continuous sample times.

To learn more about characteristics particular to each block in the library,
refer to Chapter 6, “Block Reference”

Fixed-Point Numbers

Fixed-Point Numbers

In this section...

“Notation” on page 4-5
“Signed Fixed-Point Numbers” on page 4-6

“Q Format Notation” on page 4-6

Notation

In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below.

Iir:’ws—l bws—ﬂ bﬁ IirJlﬁl_- E’a bi’. IirJ‘l bD
MSB T LSB
binary point
where
o D

i1s the ith binary digit.
® 1’5 1s the word size in bits.

. bws —1is the location of the most significant (highest) bit (MSB).

U Iir:‘.C'is the location of the least significant (lowest) bit (LSB).

4 Using the C62x and Cé4x DSP Libraries

® The binary point is shown four places to the left of the LSB. In this example
the number is said to have four fractional bits, or a fraction length of four.

Note For Target Support Package, the results of fixed-point and integer
operations in MATLAB/Simulink match the results on the hardware target
down to the least significant bit (bit-trueness). The results of floating-point
operations in MATLAB/Simulink do not match those on the hardware target,
because the libraries used by the third-party compiler may be different from
those used by MATLAB/Simulink.

Signed Fixed-Point Numbers

Signed binary fixed-point numbers are typically represented in one of three
ways:

® Sign/magnitude

®* One’s complement

® Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and the one TI digital signal processors use.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a one. For example, the two’s complement of 000101 1s 111011:

000101 ->111010 (bit inversion) ->111011 (binary addition of 1 to the LSB)

results in the negative of 000101 being 111011.

Q Format Notation

The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When performing arithmetic such as
addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge
of a binary point. They perform signed or unsigned integer arithmetic—as

Fixed-Point Numbers

if the binary point is to the right of the LSB (b,). Therefore, you determine
the binary point in your code.

In the C62x DSP Library, the position of the binary point in signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where
U Qdesignates that the number is in Q format notation—the Texas
Instruments notation for signed fixed-point numbers.

® 11s the number of bits used to designate the two’s complement integer
portion of the number.

® r11s the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.
Sometimes n is called the scale factor.

Q format always designates the most significant bit of a binary number as
the sign bit. Representing a signed fixed-point data type in Q format requires
m+n+1 bits to account for the sign.

Example — Q.15

For example, a signed 16-bit number with n = 15 bits to the right of the
binary point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (0 = m integer bits) + (15 = n fractional
bits) = 16 bits total in the data type. In Q format notation the m = 0 is often
implied, as in

Q.15

In Fixed-Point Toolbox software, this data type is expressed as

sfraci16

4-7

4 Using the C62x and Cé4x DSP Libraries

or

sfix16_En15

Filter Design Toolbox™ software expresses this data type as the vector

[16 15]

meaning the word length is 16 bits and the fraction length is 15 bits.

Example — Q1.30

Multiplying two Q.15 numbers yields a product that is a signed 32-bit data
type with 30 bits to the right of the binary point. One bit is the designated
sign bit, forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore this number is expressed as

Q1.30

In Fixed-Point Toolbox software, this data type is expressed as

sfix32_En30

In Filter Design Toolbox software, this data type is expressed as

[32 30]

Example — Q-2.17

Consider a signed 16-bit number with a scaling of 2017, This requires n =
17 bits to the right of the binary point, meaning the most significant bit is
a sign-extended bit.

Sign extension adds bits to the high end (MSB end) of the word and fills the
added bits with the value of the MSB. For example, consider a 4-bit two’s
complement number 1011. Extending the number to 7 bits with sign extension
changes the number to 1111011—the value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2.

Fixed-Point Numbers

m+n+1 =-2+17+1 = 16 bits total

Therefore this number is expressed as

Q-2.17

In Fixed-Point Toolbox software, this data type is expressed as

sfix16_En17

To express this data type in Filter Design Toolbox software, use
[16 17]
Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2~(2) or 4. The binary point

is implied to be 2 bits to the right of the 16 bits, or that there are n = -2 bits to
the right of the binary point. One bit must be the sign bit, forcing m to be 17.

m+n+1 =17+(-2)+1 =16
Therefore this number is expressed as

Q17.-2

In Fixed-Point Toolbox software, this data type is expressed as

sfix16_E2

In Filter Design Toolbox software, this data type is expressed as

[16 -2]

4 Using the C62x and Cé4x DSP Libraries

4-10

Building Models

In this section...

“Overview” on page 4-10
“Converting Data Types” on page 4-10

“Using Sources and Sinks” on page 4-11

“Choosing Blocks to Optimize Code” on page 4-11

Overview

You can use C62x or C64x DSP Library blocks in models along with certain
core Simulink and Signal Processing Blockset software. This section discusses
issues you should consider when you build models with blocks from these
libraries.

Converting Data Types

Any blocks you connect in a model have compatible input and output data
types. In most cases, C62x or C64x DSP Library blocks handle only a limited
number of specific data types. Refer to any block reference page in Chapter
6, “Block Reference” for a discussion of the data types that each block accept
sand produces.

When you connect C62x or C64x DSP Library blocks and Simulink blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink block to match the data type of the C62x DSP Library block. Many
Simulink blocks allow you to set their data type and scaling by inheriting
from the driving block, or by back propagating from the next block. This can
be a good way to set the data type of a Simulink block to match a connected
C62x DSP Library block.

Some Signal Processing Blockset software blocks and Simulink blocks also
accept fixed-point data types. Make the appropriate settings in the block
parameters when you connect them to a C62x DSP Library block.

Building Models

To use Signal Processing Blockset software or core Simulink blocks that do
not handle fixed-point data types with C62x DSP Library blocks in your
model, you must use an appropriate data type conversion block:

® To connect fixed-point and nonfixed-point blocks, use the Data Type
Conversion block from the Simulink Data Type library.

® To provide an interface to nonfixed-point blocks, use the C62x Convert
Floating-Point to Q.15 and C62x Convert Q.15 to Floating-Point blocks
from the C62x DSP Library.

® To connect blocks of varying nonfixed-point data types in your model, use
the Data Type Conversion block from the Signals and Systems Simulink
library

® To connect blocks of varying fixed-point data types in your model, use the
Data Type Conversion Inherited block from the Simulink Data Type library.

Refer to the reference pages for these blocks or invoke the Help system from
their block dialogs for more information.

Using Sources and Sinks

The C62x DSP Library does not include source or sink blocks. Use source

or sink blocks from the core Simulink library or Signal Processing Blockset
software in your models with C62x DSP Library blocks. See “Converting Data
Types” on page 4-10 for more information on incorporating blocks from other
libraries into your models.

Choosing Blocks to Optimize Code

In some cases, blocks that perform similar functions appear in more than
one blockset. For example, the C62x DSP Library, the C64x DSP Library,
and the Signal Processing Blockset software all have Autocorrelation blocks.
How do you choose which to include in your model? If you are building a
model to run on the C6713 DSK or on C62x hardware, choosing the block
from the C62x DSP Library always yields better optimized code. You can
use a similar block from another library if it provides functionality that

the C62x DSP Library block does not support, but you generate less well
optimized code.

4-11

4 Using the C62x and Cé4x DSP Libraries

4-12

In the same manner, if you are building a model to run on the C6416 DSK

or on C64x hardware, choosing the block from the C64x DSP Library always
yields better optimized code. You can use a similar block from another library
if it provides functionality that the C64x DSP Library block does not support,
but you generate less well optimized code.

Configuring Timing
Parameters for CAN Blocks

5 Configuring Timing Parameters for CAN Blocks

Setting Timing Parameters

In this section...

“Accessing the Timing Parameters” on page 5-2

“Determining Timing Parameter Values” on page 5-3

“CAN Bit Timing Example” on page 5-4

Accessing the Timing Parameters

The timing parameters that control the bit rate for DM643x CAN Receive
and DM643x CAN Transmit blocks are Baud rate prescaler, TSEG1, and
TSEG2 in the DM643x CAN Setup block.

E! Block Parameters: CAN Setup x|

— DMBA37EYM CAN Setup (mask)] (link)

Configure the CAM bug parameters on the DMB43TE WM.

— Parameter

Baud rate prezcaler;
12

TSEGT:[6

TSEGZ: [2

ERM: IFaIIing edges only

Sdw: |1

Ll Lef Lo Lo Lo

SAM: ISampIe one time
[~ Self test mode

OF. I LCancel Help | Apply |

The following sections describe how to set these parameters.

Setting Timing Parameters

Determining Timing Parameter Values

The following steps show you how to determine the appropriate values to use
for the timing parameters.
1 Gather these two values:

¢ Bit rate of the CAN network

e SYSCLKOUT — This is equivalent to the CAN module system clock
frequency. The CAN peripheral in the DM6437 is in the CLKIN clock
domain, which operates at the same frequency as the primary reference
clock to the DSP. In the DM6437EVM board, the primary reference clock
operates at 27 MHz.

2 Estimate the value of the Baud rate prescaler (BRP) and then solve
this equation for BitTime:

BitTime = SYSCLKOUT/(BRP * Bit rate)
3 Estimate values for TSEG1 and TSEG2 that satisfy the following equation:
BitTime = TSEG1 + TSEG2 + 1

The estimated values must also satisfy the following constraints:

TSEG1 >= TSEG2

IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ

IPT <= TSEG2 <= 8 TQ

1 TQ <= SJW <= min(4 TQ, TSEG2)

where:

IPT is Information Processing Time, TQ is Time Quanta, and SJW is
Synchronization Jump Width, which can be set in the CAN Setup block.

4 Iterate steps two and three until the values selected for TSEG1, TSEG2,
and BRP meet all of the criteria.

The following illustration shows the relationship between the parameters:

5-3

5 Configuring Timing Parameters for CAN Blocks

5-4

k4

- Hominal bit fime

SPNGSES s — he—sim—

rak TSEG] ——S G —————

| B=EE | Bl
pini poinl

CAN Bit Timing Example

This example shows how to determine appropriate CAN timing parameters.
Assume that SYSCLKOUT = 27 MHz, and a Bit rate of 1 Mbits/s is required.
1 With the Baud rate prescaler (BRP) set to 12, substitute the values of

Bit rate, BRP, and SYSCLKOUT into the following equation, solving for
BitTime:
BitTime = SYSCLKOUT/(BRP * Bit rate)
BitTime = 27MHz/(12 * 0.25 MBits/sec) = 9TQ
2 Set the values of TSEG1 and TSEG2 to 6TQ and 2TQ, respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:
BitTime = TSEG1 + TSEG2 + 1

9TQ = 6TQ + 2TQ + 1

Setting Timing Parameters

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/12 = .25

IPT <= TSEG1 <= 16 TQ True! .25 <= 6TQ <= 16TQ

IPT <= TSEG2 <= 8TQ True! .25 <= 2TQ <= 8TQ

1TQ <= SIJW <= min(4TQ, TSEG2), as a result of which SJW can be
set to either 1 or 2.

4 All chosen values satisfy the criteria, so no further iteration is necessary.

The following table provides common timing parameter settings for typical
values of Bit rate and SYSCLKOUT = 27 MHz. This clock frequency is the
maximum for the DM6437 EVM blocks.

Bit rate TSEG1 TSEG2 Bit Time BRP SIW
250 6 2 3 12 lor?2
Kbits/sec

500 3 1 6 9 1
Kbits/sec

1 6 2 9 3 lor?2
Mbits/sec*

2 1 1 4.5 3 ERROR
Mbits/sec*

* 3-time sampling in the DM643x CAN module is not possible at this Bit
rate. In the DM643x CAN Setup block, the SAM parameter cannot be set to
Sample three times.

References

For detailed information on the CAN module, see TMS320DM643x DMP
High-End CAN Contiroller User’s Guide (Rev. A), Literature Number
SPRU981A, available at the Texas Instruments Web site.

See Also
DM643x CAN Setup, DM643x CAN Transmit

5-5

5 Configuring Timing Parameters for CAN Blocks

Block Reference

AVNET S3ADSP DM6437
(avnet_s3adsp_dm6437) (p. 6-2)

C6416 DSK (c6416dsklib) (p. 6-3)
C6455 EVM (c6455evmlib) (p. 6-4)

C6713 DSK (c6713dsklib) (p. 6-4)
C6747 EVM (c6747evmlib) (p. 6-5)

CAN Message Handling Blocks
(canmsglib) (p. 6-6)

DM642 EVM (dm642evmlib) (p. 6-6)

DM6437 EVM (dm6437evmlib)

(p. 6-6)

DM648 EVM (dm648evmlib) (p. 6-8)
DSP/BIOS (dspbioslib) (p. 6-8)

Host Communication (hostcommlib)
(p. 6-9)

C62x DSP Library (tic62dsplib)
(p. 6-9)

C64x DSP Library (tic64dsplib)
(p. 6-11)

Scheduling (¢6000dspcorelib)
(p. 6-14)

Work with DM6437 EVM boards

Work with C6416 DSK boards

Work with SRIO on C6455 EVM
boards

Work with C6713 DSK boards
Work with DM648 EVM boards
Host CAN blocks

Work with DM642 EVM boards
Work with DM6437 EVM boards

Work with DM648 EVM boards

Work with C6000 models to provide
DSP/BIOS tasks and interrupts

Work with C2000™C5000™C6000
models to provide DSP/BIOS tasks
and interrupts

Work with C62x processors

Work with C64x processors

Work with all C6000 processors

6 Block Reference

Target Communication
(targetcommlib) (p. 6-14)

Target Preferences (¢6000tgtpreflib)
(p. 6-15)

Work with C6000 processor and
board models that communicate
with hosts such as xPC Target or
host-side models

Configure models for code generation
and targeting

AVNET S3ADSP DM6437 (avnet_s3adsp_dmé6437)

6-2

C6000 Deinterleave

C6000 Interleave

C6000 IP Config

DM643x CAN Receive

DM643x CAN Setup

DM643x CAN Transmit

DM643x Draw Rectangles

DM643x OSD
DM643x PWM

DM643x UART Config

Separate interleaved YCbCr 4:2:2
data into Y, Cb, and Cr components

Convert planar YCbCr 4:2:2 data to
interleaved YCbCr 4:2:2 data

Configure Internet Protocol on
C6000 targets with Ethernet ports

Receive messages from CAN serial
communications bus on DM643x

Configure CAN serial
communications bus parameters on
DMG643x

Configure CAN mailbox to
transmit messages on CAN serial
communications bus on DM643x

Configure Video Processing Back
End to draw rectangles using On
Screen Display (OSD) module

Overlay graphics and text on video

Configure DM643x DSP Event
Manager to generate PWM
waveforms

Configure DM643x UART for serial
communication

C6416 DSK [c6416dsklib)

DM643x UART Receive Configure receiver element of
DM643x UART module for serial
communication

DM643x UART Transmit Configure transmitter element of
DM643x UART module for serial
communication

DM643x Video Capture Configure Video Processing Front
End (VPFE) to capture REC656 or
generic YCbCr 4:2:2 video

DM643x Video Display Configure Video Processing Back
End to display NTSC/PAL video

For information about the Avnet SSADSP DM6437 Target Preferences block,
see the following topic:

Target Preferences/Custom Board Configure model for Texas
Instruments processor.

C6416 DSK (c6416dsklib)

C6416 DSK ADC Digitized output from codec to
processor

C6416 DSK DAC Use codec to convert digital input to
analog output

C6416 DSK DIP Switch Simulate or read DIP switches

C6416 DSK LED Control LEDs

C6416 DSK Reset Reset to initial conditions

6-3

6 Block Reference

6-4

C6455 EVM (c6455evmlib)

C6455 DSK ADC

C6455 DSK DAC

C6455 DSK DIP

C6455 DSK LED

C6455 DSK SRIO Config

C6455 DSK SRIO Receive

C6455 DSK SRIO Transmit

C6713 DSK (c6713dsklib)

C6713 DSK ADC

C6713 DSK DAC

C6713 DSK DIP Switch
C6713 DSK LED
C6713 DSK Reset

Configure AIC23 audio codec to
capture audio stream from LINE-IN
or MIC

Configure AIC23 codec to convert
digital signal to audio output on
LINE OUT and HP OUT

Output state of user-selected DIP
switch as Boolean

Apply Boolean input to user-selected
LED

Configure generated code for serial
Rapidl/O peripheral

Configure generated code to receive
serial Rapidl/O packets

Configure generated code to transmit
serial RapidI/O packets

Digitized signal output from codec
to processor

Configure codec to convert digital
input to analog output

Simulate or read DIP switches
Control LEDs

Reset to initial conditions

C6747 EVM (c6747evmlib)

C6747 EVM (c6747evmlib)

C6000 IP Config Configure Internet Protocol on
C6000 targets with Ethernet ports

C6747EVM ADC Capture audio stream from LINE IN
jack

C6747EVM DAC Output audio on LINE OUT / HP
OUT jacks

C6747EVM DIP Switch Output DIP switch status

C6747EVM LED Control four on-board LEDs

For information about the C6747 EVM Target Preferences block, see the
following topic:

Target Preferences/Custom Board Configure model for Texas
Instruments processor.

6 Block Reference

CAN Message Handling Blocks (canmsglib)

CAN Pack

CAN Unpack

DM642 EVM (dm642evmlib)

DM642 EVM Audio ADC
DM642 EVM Audio DAC

DM642 EVM FPGA GPIO Read

DM642 EVM FPGA GPIO Write
DM642 EVM LED

DM642 EVM Reset

DM642 EVM Video ADC

DM642 EVM Video DAC
DM642 EVM Video Port

DM6437 EVM (dm6437evmlib)

C6000 Deinterleave

C6000 Interleave

6-6

Pack individual signals into CAN
message

Unpack individual signals from CAN
messages

Audio codec and peripherals

Configure codec to convert digital
audio input to analog audio output

User GPIO registers to read from
selected pins

Write to GPIO registers
Control LEDs
Reset to initial conditions

Video decoders to capture analog
video

Video encoder to display video

Video port to receive video data from
video input port

Separate interleaved YCbCr 4:2:2
data into Y, Cb, and Cr components

Convert planar YCbCr 4:2:2 data to
interleaved YCbCr 4:2:2 data

DM6437 EVM (dmé437evmlib)

C6000 IP Config

DM6437 EVM ADC

DM6437 EVM DAC

DM6437 EVM DIP

DM6437 EVM LED

DM6437 EVM Video Capture

DM643x CAN Receive

DM643x CAN Setup

DM643x CAN Transmit

DM643x Draw Rectangles

DM643x OSD
DM643x PWM

DM643x UART Config

Configure Internet Protocol on
C6000 targets with Ethernet ports

Configure AIC33 audio codec to
capture audio stream from LINE-IN
or MIC

Configure AIC33 codec to convert
digital signal to audio output on
LINE OUT and HP OUT

Output state of user-selected DIP
switch as Boolean

Apply Boolean input to user-selected
LED

Configure video peripherals to
capture NTSC/PAL video

Receive messages from CAN serial
communications bus on DM643x

Configure CAN serial
communications bus parameters on
DM643x

Configure CAN mailbox to
transmit messages on CAN serial
communications bus on DM643x

Configure Video Processing Back
End to draw rectangles using On
Screen Display (OSD) module

Overlay graphics and text on video

Configure DM643x DSP Event
Manager to generate PWM
waveforms

Configure DM643x UART for serial
communication

6 Block Reference

DM643x UART Receive
DM643x UART Transmit

DM643x Video Display

DM648 EVM (dm648evmlib)

C6000 IP Config
DM648 EVM Video Capture

DM648 EVM Video Display

DSP/BIOS (dspbioslib)

DSP/BIOS Hardware Interrupt
DSP/BIOS Task

DSP/BIOS Triggered Task

6-8

Configure receiver element of
DM643x UART module for serial
communication

Configure transmitter element of
DM643x UART module for serial
communication

Configure Video Processing Back
End to display NTSC/PAL video

Configure Internet Protocol on
C6000 targets with Ethernet ports

Configure DSP peripherals to
capture NTSC/PAL or HD video

Configure DSP peripherals to display
NTSC, PAL, HD, or VESA video

Generate Interrupt Service Routine

Create task that runs as separate
DSP/BIOS thread

Create asynchronously triggered
task

Host Communication (hostcommlib)

Host Communication (hostcommlib)

Byte Pack

Byte Reversal
Byte Unpack

UDP Receive

UDP Send

C62x DSP Library (tic62dsplib)

Conversions (p. 6-9)

Filters (p. 6-10)

Math and Matrices (p. 6-10)
Transforms (p. 6-11)

Conversions

C62x Convert Floating-Point to Q.15

C62x Convert Q.15 to Floating-Point

Convert input signals to uint8
vector

Reverse order of bytes in input word

Unpack UDP uint8 input vector into
Simulink data type values

Receive uint8 vector as UDP
message

Send UDP message

Convert data types
Filter input signals
Perform mathematical operations

Perform transforms

Convert single-precision
floating-point input signal to
Q.15 fixed-point

Convert Q.15 fixed-point signal to
single-precision floating-point

6-9

6 Block Reference

6-10

Filters

C62x Complex FIR
C62x General Real FIR

C62x LMS Adaptive FIR
C62x Radix-4 Real FIR

C62x Radix-8 Real FIR
C62x Real Forward Lattice All-Pole
IIR

C62x Real IIR

C62x Symmetric Real FIR

Math and Matrices

C62x Autocorrelation
C62x Block Exponent

C62x Matrix Multiply
C62x Matrix Transpose
C62x Reciprocal

C62x Vector Dot Product

C62x Vector Maximum Index

Filter complex input signal using
complex FIR filter

Filter real input signal using real
FIR filter

LMS adaptive FIR filtering

Filter real input signal using real
FIR filter

Filter real input signal using real
FIR filter

Filter real input signal using lattice
filter

Filter real input signal using IIR
filter

Filter real input signal using FIR
filter

Autocorrelate input vector or
frame-based matrix

Minimum number of extra sign bits
in each input channel

Matrix multiply two input signals
Matrix transpose input signal

Fraction and exponent portions of
reciprocal of real input signal

Vector dot product of real input
signals

Zero-based index of maximum value
element in each input signal channel

Cé64x DSP Library (tic64dsplib)

C62x Vector Maximum Value Maximum value for each input
signal channel

C62x Vector Minimum Value Minimum value for each input signal
channel

C62x Vector Multiply Element-wise multiplication on
inputs

C62x Vector Negate Negate each input signal element

C62x Vector Sum of Squares Sum of squares over each real input
channel

C62x Weighted Vector Sum Weighted sum of input vectors

Transforms

C62x Bit Reverse Bit-reverse elements of each complex
input signal channel

C62x FFT Decimation-in-frequency forward
FFT of complex input vector

C62x Radix-2 FFT Radix-2 decimation-in-frequency
forward FFT of complex input vector

C62x Radix-2 IFFT Radix-2 inverse FFT of complex

input vector

C64x DSP Library (tic64dsplib)

Conversions (p. 6-12) Data conversion

Filters (p. 6-12) Filter input signals
Math and Matrices (p. 6-12) Mathematical operations
Transforms (p. 6-13) Transforms

6-11

6 Block Reference

Conversions

C64x Convert Floating-Point to Q.15

C64x Convert Q.15 to Floating-Point

Filters

C64x Complex FIR
C64x General Real FIR

C64x LMS Adaptive FIR
C64x Radix-4 Real FIR

C64x Radix-8 Real FIR
C64x Real Forward Lattice All-Pole
IIR

C64x Real IIR

C64x Symmetric Real FIR

Math and Matrices

C64x Autocorrelation
C64x Block Exponent

C64x Matrix Multiply

6-12

Convert floating-point signal to Q.15
fixed-point

Convert Q.15 fixed-point signal to
single-precision floating-point

Filter complex input signal using
complex FIR filter

Filter real input signal using real
FIR filter

LMS adaptive FIR filtering

Filter real input signal using real
FIR filter

Filter real input signal using real
FIR filter

Filter real input signal using lattice
IIR filter

Filter real input signal using IIR
filter

Filter real input signal using FIR
filter

Autocorrelate input vector or
frame-based matrix

Minimum number of extra sign bits
in each input channel

Matrix multiply two input signals

Cé64x DSP Library (tic64dsplib)

C64x Matrix Transpose
C64x Reciprocal

C64x Vector Dot Product
C64x Vector Maximum Index
C64x Vector Maximum Value
C64x Vector Minimum Value
C64x Vector Multiply

C64x Vector Negate
C64x Vector Sum of Squares

C64x Weighted Vector Sum

Transforms

C64x Bit Reverse
C64x FFT
C64x Radix-2 FFT

C64x Radix-2 IFFT

Matrix transpose input signal

Fraction and exponent of reciprocal
of real input signal

Vector dot product of real input
signals

Zero-based index of maximum value
element in each input signal channel

Maximum value for each input
signal channel

Minimum value for each input signal
channel

Element-wise multiplication on
inputs

Negate each input signal element

Sum of squares over each real input
channel

Weighted sum of input vectors

Bit-reverse elements of each complex
input signal channel

Decimation-in-frequency forward
FFT of complex input vector
Radix-2 decimation-in-frequency
forward FFT of complex input vector

Radix-2 inverse FFT of complex
input vector

6-13

6 Block Reference

Scheduling (c6000dspcorelib)

C6000 Block Processing Repeat user-specified operation
on submatrices of input matrix,
using internal memory of DSP for
increased efficiency

C6000 CPU Timer Select timer and configure periodic
interrupt
C6000 EDMA Configure EDMA Controller on

C6000 processor

Target Communication (targetcommlib)

C6000 IP Config Configure Internet Protocol on
C6000 targets with Ethernet ports

C6000 TCP/TP Receive Receive message from remote TP
interface

C6000 TCP/TP Send Send message to remote IP interface

C6000 UDP Receive Receive uint8 vector as UDP
message

C6000 UDP Send Send UDP message to host

Also present are the following three blocks from the Target Support
Package/Common/Host Communication library:

Byte Reversal Communicate with target processor
that is big-endian.

Byte Pack Pack input data into single output
vector of type uint8.

Byte Unpack Unpack binary byte vector to extract
data.

6-14

Target Preferences (c6000tgtpreflib)

Target Preferences (c6000tgtpreflib)

For information about any of the Target Preferences/Custom Board blocks for
Texas Instruments’ processors, see the following topic:

Target Preferences/Custom Board Configure model for Texas
Instruments processor.

6-15

6 Block Reference

6-16

Blocks — Alphabetical List

Byte Pack

7-2

Purpose
Library

Description

Byte Padk
Padk

Dialog
Box

Convert input signals to uint8 vector
Host Communication (hostcommlib)

Using the input port, the block converts data of one or more data types
into a single uint8 vector for output. With the options available, you
specify the input data types and the alignment of the data in the output
vector. Because UDP messages are in uint8 data format, use this block
before a UDP Send block to format the data for transmission using

the UDP protocol.

E! Function Block Parameters: Pack il

—Byte pack (mask)

Pack input data into a single output vector of type uintd. Insert before
UDP Send block to produce a uintd byte vector from multiple vectors
of varying data type.

—Parameters
Input port data types (cell array):
[(double |

Byte alignmentl‘l j

0K I Cancel | Help | Apply |

Input port data types (cell array)
Specify the data types for the different signals as part of the
parameters. The block supports all Simulink data types except
characters. Enter the data types as Simulink types in the cell
array, such as ‘’double’ or ’int32’. The order of the data type
entries in the cell array must match the order in which the data
arrives at the block input. This block determines the signal sizes
automatically. The block always has at least one input port and
only one output port.

Byte Pack

Example

Byte alignment
This option specifies how to align the data types to form the uint8
output vector. Select one of the values in bytes from the list.

Alignment can occur on 1, 2, 4, or 8-byte boundaries depending
on the value you choose. The value defaults to 1. Given the
alignment value, each signal data value begins on multiples of
the alignment value. The alignment algorithm ensures that each
element in the output vector begins on a byte boundary specified
by the alignment value. Byte alignment sets the boundaries
relative to the starting point of the vector.

Selecting 1 for Byte alignment provides the tightest packing,
with no holes between any data types for any combination of data
types and signals.

Sometimes, you can have multiple data types of varying lengths. In such
cases, specifying a 2-byte alignment can produce 1-byte gaps between
uint8 or int8 values and another data type. In the pack implementation,
the block copies data to the output data buffer 1 byte at a time. You can
specify any of the data alignment options with any of the data types.

Use a cell array to enter input data types in the Input port data types
parameter. The order of the data types you enter must match the order
of the data types at the block input.

7-3

Byte Pack

7-4

See Also

E! Function Block Parameters: Pack il

—Byte pack (mask)

Pack input data into a single output vector of type uintd. Insert before
UDP Send block to produce a uintd byte vector from multiple vectors
of varying data type.

—Parameters
Input port data types (cell array):
|{'uint3 " 'uint3: '.'uint‘lS'.'double'.'uintB'.'double'.'single'[}

Byte alignment|2 j

0K I Cancel | Help | Apply |

In the cell array, you provide the order in which the block expects to
receive data—uint32, uint32, uint16, double, uint8, double, and

single. With this information, the block automatically provides the
proper number of input ports.

Byte alignment equal to 2 specifies that each new value begins 2 bytes
from the previous data boundary.

The example shows the following data types:
{'uint32', 'uint32', 'uint16', 'double’', 'uint8', 'double', 'single'}

When the signals are scalar values (no matrices or vectors in this
example), the first signal value in the vector starts at 0 bytes. Then,
the second signal value starts at 2 bytes, and the third at 4 bytes. Next,
the fourth signal value follows at 6 bytes, the fifth at 8 bytes, the sixth
at 10 bytes, and the seventh at 12 bytes. As the example shows, the
packing algorithm leaves a 1-byte gap between the uint8 data value
and the double value.

Byte Reversal, Byte Unpack

Byte Reversal

Purpose
Library

Description

Byte
reversal

BEyte Revers=al

Dialog
Box

Reverse order of bytes in input word
Host Communication (hostcommlib)

Byte reversal changes the order of the bytes in data you input to the
block. Use this block when your process communicates between targets
that use different endianness, such as between Intel® processors that
are little endian and others that are big endian. Texas Instruments
processors are little-endian by default.

To exchange data with a processor that has different endianness, place
a Byte Reversal block just before the send block and immediately after
the receive block.

E! Function Block Parameters: Byte Ri il

—Byte Reversal (mask)

Use Byte Reversal block for communicating with a target processor
thatis big-endian. Insert before the Byte Pack block or just after Byte
Unpack block to ensure thatthe data values are transmitted properly.

—Parameters

Mumber of inputs:

0K I Cancel | Help | Apply |

Number of inputs
Specify the number of input ports for the block. The number of
input ports adjusts automatically to match value so the number of
outputs equals the number of inputs.

7-5

Byte Reversal

7-6

When you use more than one input port, each input port maps
to the matching output port. Data entering input port 1 leaves
through output port 1, and so on.

Reversing the bytes does not change the data type. Input and
output retain matching data type.

The following model shows byte reversal in use. In this figure, the input
and output ports match for each path.

intlE

-232

Con=tant

[Bin 1111 1311 po0l1 0110 ‘

wintlE

intlé

ol [Bim 0001 0330 1337 1331 ‘

intlfout

intlé

232

wintlf [bin 1110 1010 0000 o000
wintii

vvy

Eyte Beverszal

Constantl [

bin 0000 0000 1110 1010] |

Eyte Revezs=al

wintdZ

uintlé

232

Con=tantd [

bin 0000 0000 0000 0003 0000 0000 1110 1010' |

See Also

uint3Z

Byte Pack, Byte Unpack

uintlfout

- | bin 1110 1010 0000 0000 0000 0000 0000 0000'

uinwdZout

Byte Unpack

Purpose
Library

Description

Byte Unpadk
Unpadk

Dialog
Box

Unpack UDP uint8 input vector into Simulink data type values
Host Communication (hostcommlib)
Byte Unpack is the inverse of the Byte Pack block. It takes a UDP

message from a UDP receive block as a uint8 vector, and outputs
Simulink data types in various sizes depending on the input vector.

The block supports all Simulink data types.

=1 Function Block Parameters: Unpack il

—Byte Unpack (mask)

Unpack a binary byte vector to extract data. Insert after UDP Recw
block to break-up a UDP packetinto its constituent data vectors.

—Parameters
Output port dimensions (cell array):
{11}

Output port data types (cell array):
|{'double'}

Byte alignmentl‘l j

0K I Cancel | Help | Apply |

Output port dimensions (cell array)
Containing a cell array, each element in the array specifies
the dimension that the MATLAB size function returns for the
corresponding signal. Usually you use the same dimensions
as you set for the corresponding Byte Pack block in the model.
Entering one value means that the block applies that dimension
to all data types.

7-7

Byte Unpack

Output port data types (cell array)
Specify the data types for the different input signals to the Pack
block. The block supports all Simulink data types—single,
double, int8, uint8, int16, uint16, int32, and uint32, and
Boolean. The entry here is the same as the Input port data types
parameter in the Byte Pack block in the model. You can enter one
data type and the block applies that type to all output ports.

Byte Alignment
This option specifies how to align the data types to form the input
uint8 vector. Match this setting with the corresponding Byte
Pack block alignment value of 1, 2, 4, or 8 bytes.

Example This figure shows the Byte Unpack block that corresponds to the
example in the Byte Pack example. The Output port data types (cell
array) entry shown is the same as the Input port data types (cell
array) entry in the Byte Pack block

{'uint32','uint32','uint16', 'double', 'uint8', 'double', 'single'}.

=] Function Block Parameters: Unpack il

—Byte Unpack (mask)

Unpack a binary byte vector to extract data. Insert after UDP Recv
block to break-up a UDP packetinto its constituent data vectors.

—Parameters

Output port dimensions (cell array):
I{‘l.‘l.[2.4].[4.4].[2,2].‘].[3.3][}

Output port data types (cell array):

I{'uint3 "'uint32','uint1€','double’,'uintd','double’,'single'}

Byte alignment|2 j

0K I Cancel Help Apply

7-8

Byte Unpack
|

In addition, the Byte alignment setting matches as well. Output port
dimensions (cell array) now includes scalar values and matrices to
demonstrate entering nonscalar values. The example for the Byte Pack
block assumed only scalar inputs.

See Also Byte Pack, Byte Reversal

C6000 Block Processing

Purpose Repeat user-specified operation on submatrices of input matrix, using
internal memory of DSP for increased efficiency

Librclry “Scheduling (¢6000dspcorelib)” on page 6-14
Description The Block Processing block extracts submatrices of a user-specified size
] i from each input matrix. It sends each submatrix to a subsystem for
EE000 processing, and then reassembles each subsystem output into the output
Pr:’l:::ing i matrix, as shown in the following figure. While processing images as

Brad Praceming matrices, this submatrix capability can greatly improve the throughput.

\\ /

Subsystem

Note Because you modify the Block Processing block subsystem, the
link between this block and the block library is broken when you
click-and-drag a Block Processing block into your model. Thus, this
block is not automatically updated if you upgrade to a newer version
of the target support package. To delete blocks from this subsystem
without triggering a warning, right-click on the block and select Look
under mask. If you search for library blocks in a model, this block
is not part of the results.

The blocks inside the subsystem dictate the following block
configuration information:

¢ Frame status of the input and output signals

® Whether the block supports single channel or multichannel signals

7-10

C6000 Block Processing

e Which data types this block supports

Use the Number of inputs and Number of outputs parameters to
specify the number of input and output ports on the Block Processing
block.

Use the Block size parameter to specify the size of each submatrix

in cell array format. Each vector in the cell array corresponds to one
input; the block uses the vectors in the order you enter them. If you
have one input port, enter one vector. If you have more than one input
port, you can enter one vector that is used for all inputs or you can
specify a different vector for each input. For example, to specify each
submatrix as a 2-by-3 array, enter {[2 3]}. The output matrix size
depends on the size of the submatrix at the output of the subsystem and
the number of submatrices at the input. For example, if the output
submatrix size is 32x16 and the input submatrix sizes are 8x16, the
total output matrix size will be 256x256. If the block size specified does
not subdivide an input matrix evenly, i.e. there are leftover matrix
elements which are not covered by the subdivision, those uncovered
elements will be ignored.

Use the Overlap parameter to specify the overlap of each submatrix
in cell array format. Each vector in the cell array corresponds to the
overlap of one input; the block uses the vectors in the order they are
specified. If you enter one vector, each overlap is the same size. For
example, to specify that each 3-by-3 submatrix overlap by 1 row and 2
columns, enter {[1 2]}.

The Traverse order parameter determines how the block extracts
submatrices from the input matrix. If you select Row-wise, the
block extracts submatrices by moving across the rows. If you select
Column-wise, the block extracts submatrices by moving down the
columns.

Click Open Subsystem to open the block subsystem. Click-and-drag
blocks into this subsystem to define the processing operations the block
performs on the submatrices. The input to this subsystem are the
submatrices defined by the Block size parameter.

7-11

C6000 Block Processing

7-12

Example

Note When you place an Assignment block inside a Block Processing
block subsystem, the Assignment block behaves as though it is inside a
For Iterator block. For a description of this behavior, refer to “Iterated
Assignment” on the Assignment block reference page. To produce the
normal behavior of the Assignment block, use an Overwrite Values
block inside the Block Processing block subsystem.

This section provides an example that applies the block processing block
to multiply and add submatrices.

Multiple Inputs

In this example, you multiply each element of three input matrices by
two and add the results using the Block Processing block. Suppose you
have the following model:

C6000 Block Processing

1 2 2 4
& 6 7T 8
g 10 11 12

12 14 15 16

Constant

1 & 2 4
£ B 7 8
g 10 11 1:

12 14 15 16

Block

processing

Y¥Y°¥

Constantt

1 2 2 4
& 6 7T 8
g 10 11 12

12 14 15 16

|

Constant2

1 Use the Block Processing block to perform the multiplication and
addition on submatrices of the three input matrices. Set the block

Blodk Processing

Y

parameters as shown in the following figure:

e Number of inputs = 3

® Number of outputs = 1

¢ Block size = {[2 2]}

Crizplay

7-13

C6000 Block Processing

5] Function Block Parameters: Block Processing x|

— Block Proceszing

Repeats a uzer-specified operation on submatrices of the input matri=.

Thiz block extracts submatrices of a uzer-specified zize from the input matris. [t sends
each submatrix to a subsystem for processing. and then reazzembles each subsystem
output inko the output matris,

Uze the 'Block size' and 'Overlap’ parameters to zpecify the size and overlap of each
zubmatrix in cell array format,

"Mumber to append to signal name' parameter iz used to generate unigue names for
internal data buffers az well az the output signal(z]. Each block must have a unigue
‘Mumber to append to signal name' parameter which iz not zhared by any other CEO00
Block Processzing block in the model,

— Parameter.

Mumber of inputs: |3

Mumber of outputs; |1

Block size: [{[2 2[}

Dverlap: I{[EI Oft

Traverse order; IHow-wise ;I

Mumber to append to zignal name:; |1 ;I
— Subsystem

Click the Open Subsystem button to open the block's subsystem, Click-and-drag blocks
into thiz subsystem to define the processing operation(z] the block performs on

submatrices.
Open Subsystem |

1]8 I LCancel | Help Spply

For each iteration, the block sends a 2-by-2 submatrix from each
input matrix to the Block Processing block subsystem to be processed.
The block calculates its total number of iterations using the
dimensions of the matrix connected to the top input port. In this case,

7-14

C6000 Block Processing

the first input is a 4-by-4 matrix. The block can extract four 2-by-2
submatrices from this input matrix, so the block iterates four times.

2 Click Open Subsystem.

The block subsystem opens.

E!untitIed,.-"...,.l"Blm:k iterator/sub-block i
File Edit Yiew Simulation Format Tools Help

=2 = = A S S T [

Place your block
processing system here.

1 »(1)
In1 ot
InZ

To awioid unexpected behaovior fom the mask
callback function, do not ErRame input and output ports,

F|100% [| [ode4s 4

3 Click and drag the blocks shown in the following table into the
subsystem.

7-15

C6000 Block Processing

7-16

Block Library Quantity
Gain Simulink / Math Operations 3
Sum Simulink / Math Operations 1

4 Use the Gain blocks to multiply the elements of each submatrix by

two. Set the Gain parameter to 2.

5 Use the Sum block to add the values. Set the Icon shape parameter
to rectangular and the List of signs parameter to +++.

6 Connect the blocks as shown in the following figure.

E!untitIed,.-"...,.l"Blm:k iterator /sub-bloc
File Edit Yiew Simulation Format Tools Help

=10l x|

OE&| &= e = [u

Place your block
processing system here.

>

In1

InZ

G

Inz

F|100% [| [ode4s

7 Close the subsystem and click OK.

8 Run the model.

C6000 Block Processing

=10 %]

File Edit Yiew Simulation Format Tools Help

NDBEHE e (b sfioo | | HEbDSE REE G ®

1 :z 2 a
5 B 7T &
g 10 11 1=
12 14 15 15

Constant

B [1z | 3] | |
30 [36 | Bl L
54 [50 [55 [7Z]
78] | 39 | o0] | 06 |

1z @ 4
5 6 7 &
g 10 11 1z
12 14 15 18

processing L

[
Block |
[
[

¥ Yy

Black Proceszing

Display

Constantd

1 & 4
5 & 7 &
g 10 11 1=
12 14 15 15

Constant2

Ready [100%% [[|ode4s y

The Block Processing block operates on the submatrices, assembles
the results into an output matrix, and then uses the Display block to
present the output matrix.

7-17

C6000 Block Processing

Dialog The Block Processing dialog box appears as shown in the following
Box figure.

E Function Block Parameters: Block Processing x|

— Block Processzing

Repeatz a user-specified operation on submatrices of the input matris,

Thiz block extracts submatrices of a user-specified zize from the input matris, [t zends
each submatrix to a subsystem for processing. and then reazzembles each subsystem
output inko the output matris,

Uze the 'Block size' and 'Overlap’ parameters to zpecify the size and overlap of each
zubmatrix in cell array format,

‘Mumber to append to zsignal name' parameter iz uzed to generate unique names for
internal data buffers as well as the output signallz). Each block must have a unique
‘Mumber to append to zsignal name' parameter which iz not shared by any ather CE000
Black Proceszsing black in the model

— Parameter:

Mumber of inputs: |1

Mumber of outputs; |1

Block size: [{[5 8]}

Overlap: I{[El o

Traverze order: IHow-wise

Murnber to append ta signal name: |1

=
=

— Subsystem

Click the Open Subsystem button to open the block's subsystem, Click-and-drag blocks
into thiz subsystem to define the processing operation(z] the block performs on

submatrices.
Open Subzsystem |

Ok LCancel | Help Apply

7-18

C6000 Block Processing

See Also

Number of inputs
Enter the number of input ports on the Block Processing block.

Number of outputs
Enter the number of output ports on the Block Processing block.

Block size
Specify the size of each submatrix in cell array format. Each
vector in the cell array corresponds to one input.

Overlap
Specify the overlap of each submatrix in cell array format. Each
vector in the cell array corresponds to the overlap of one input.

Traverse order
Determines how the block extracts submatrices from the input
matrix. If you select Row-wise, the block extracts submatrices
by moving across the rows. If you select Column-wise, the block
extracts submatrices by moving down the columns.

Open Subsystem
Click this button to open the block’s subsystem. Click and drag
blocks into this subsystem to define the processing the block
performs on the submatrices.

Memory Allocate, Memory Copy, C6000 EDMA

7-19

C6000 Deinterleave

Purpose
Library
Description
CE000
ChCr Ch

Ceinterleave

Cr

Ceinterleave

Dialog
Box

See Also

7-20

Separate interleaved YCbCr 4:2:2 data into Y, Cb, and Cr components

“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2
“DM6437 EVM (dm6437evmlib)” on page 6-6

This block separates interleaved YCbCr 4:2:2 data into its luma
component (Y’), blue-difference chroma component (Cb), and
red-difference chroma component (Cr).

The input, YCbCr, is a (2*M)*N array of 8-bit unsigned values
representing an interleaved YCbCr 4:2:2 image where the size of the
luma plane, Y, is M*N. Input data is assumed to be in row-major
format, and the data stored in each row of the input is assumed to be
interleaved in the following order:

Cb(1), Y(1), Cr(1), Y(2), Cb(M), Y(M), Cr(M), Y(M)

The deinterleaved outputs are the planar format luma component, Y,
and the chroma components, Cb and Cr, of the YCbCr 4:2:2 input. If
the input image is a (2*M) by N matrix, then the output dimensions
for the Y port is (M*N) and the dimensions for the Cb and Cr ports
are (M/2) by N.

=] Function Block Parameters: Deintetleave x|

"YCbEr 4.2 2 Deinterleave [maszk] [link)

Separates interleaved YCbCr 4:2:2 data into itz ', Cb and Cr components.

ak Cancel | Help Apply

This block does not have settable options.

C6000 Interleave

C6000 EDMA

Purpose
Library

Description

Ce0oa
myEDMAdevicel

EDMR

EDME

Configure EDMA Controller on C6000 processor
“Scheduling (c6000dspcorelib)” on page 6-14

Use this block to configure the Enhanced Direct Memory Access
(EDMA) Controller on C6000 processors. The controller manages data
transfers between the device peripherals on the C6000 processors and
the level two (L2) cache/memory controller. Data transfers handled
by the controller include:

® Host accesses to cache

® Accessing noncacheable memory
® Servicing cache

¢ Transferring data by user programs

EDMA controller handles transfers without involving the processor
and can process transfers between any addressable memory spaces,
including internal and external memory.

For details about the EDMA controller, refer to TMS320C6000 DSP
Enhanced Direct Memory Access (EDMA) Controller Reference Guide,
SPRU234, from the Texas Instruments Web site.

Note The C6000 EDMA block does not support C64x* processors, such
as the C6455 or TCI6482.

EDMA blocks provide two operating modes—open an EDMA channel
and allocate a table in EDMA parameter RAM (PaRAM).

The open channel mode opens an EDMA channel for the controller.
When you open a channel, EDMA sets the transfer parameters for the
channel and writes those to a table as PaRAM entries.

In allocate table mode, the block sets the EDMA transfer parameters
and places them in a table in EDMA PaRAM without opening a

7-21

C6000 EDMA

7-22

channel. With this mode, you can use EDMA channels and transfers
to develop complex memory structures like sorting, or circular buffers.
The allocate table operating mode lets you link multiple EDMA blocks
on one EDMA channel. One EDMA block opens an EDMA channel
and succeeding blocks link to the open channel and originating EDMA
block by the device handle setting.

Use the following procedure to link EDMA blocks in a model:

1 Add an EDMA block to your model, open the block dialog box, and
set Setup type to Open channel.

2 Assign an EDMA channel to use in EDMA channel (-1 for
auto-allocate) by entering a channel number or entering -1 to let
the block choose the channel.

3 In Device handle, provide a name for this EDMA block. The name
you enter becomes the block identifier for other blocks to link to this
block. Use any valid C variable string.

4 Close the block dialog box.

5 Add a second EDMA block to your model, and open the block dialog
box to set the block parameters.

6 Select Allocate table from the Setup type list.
7 Select the Link to event check box.

8 Enter the device handle from the earlier block to link to in Linked
event handle in this block. The two blocks are linked together
through the device handle and they use the same channel.

9 Close the block dialog box.

10 To link more EDMA blocks to this channel, repeat steps 5 through 9
for each new block, entering the same device handle.

C6000 EDMA

For a demonstration of using and linking EDMA blocks, refer to the
demo Custom Device Driver via Legacy Code Integration in the Target
Support Package demos in the online help system.

7-23

C6000 EDMA

7-24

Dialog
Box

E! Block Parameters: EDMA : il

o000 EDMA (mask)

Configures EDMA peripheral on Tl TMS320C6000 DSP chips. Depending on the
setup type, itfirst opens an EDMA channel or allocates PRAM tables used far the
reload/link parameters. Then, it sets up the EDMA channel using the EDRA,
parameter arguments which are written to the EDMA FPRAM entries.

—Parameters

Setup lype:l Open channel j
EDMA channel (-1 for auto-allocate):

[

Dewvice handle:

[myEDMAdevice]

Element count;
|54

Element size:| 32-hitword j

Transfer source:
[ox00000000

Transfer source address update:l MNaone j

Transfer destination:
|ox00000000

Transfer destination address update:l MNone j
[v Link to event

Linked ewvent handle:

Transfer complete code (-1 for auto-allocate):

[

[8]:4 | Cancel Help Apphy

C6000 EDMA

The preceding dialog box shown presents all of the parameters
available. In some cases, parameters are available only when you select
other parameters. The following list of block parameters describes all
of the available parameters for the block and when one parameter
enables another.

Setup type
Choose either Open channel or Allocate table from the list. If
this is the only EDMA block in your model, choose Open channel.
If your model includes multiple EDMA blocks, choose Open
channel when each block should use a different channel. Select
Allocate table for any block that you plan to link to another
EDMA block.

EDMA channel (-1 for auto-allocate)
Enter an integer from 0 to 63 to specify the EDMA channel to use.
If you enter -1, the block assigns the channel automatically from
the available channels.

Device handle
Provide a name for this block. The name you enter must be a
valid C variable. The EDMA controller uses the name as the
identifier for this block and open channel. Other EDMA blocks in
your model can link to this block and channel by using the device
handle you enter.

Element count
Specifies the number of elements in a frame. The value 65355 is
the maximum number of elements allowed in one frame. The
value defaults to 64 elements.

Element size
EDMA supports 32-bit words, 16-bit half words, and 8-bit bytes.
Select one of the list entries according to your needs.

Transfer source
Enter the address of the elements to transfer. Specify the
address as a hexadecimal value as shown by the default address
0x.00000000

7-25

C6000 EDMA

7-26

Transfer source address update

Select whether to enable transfer source update on the EDMA
controller. When you select an option from the list, the controller
updates the transfer source address according to your choice.
Choose one of the list entries shown in the following table.

Option Effect on Transfer Condition
Source Address Indicated
None Does not change Indicates that all
address after of the elements
submitting the transfer | to transfer are
request. located at the
same address in
memory.
Increment Increases the transfer | Indicates that
address by the value the elements are
in Element count contiguous, with
after submitting the each subsequent
transfer request. element located
at a higher
address than
the previous
element.
Decrement Decreases the transfer | Indicates that

address by the value
in Element count
after submitting the
transfer request.

the elements are
contiguous, with
each subsequent
element located
at a lower
address than
the previous
element.

C6000 EDMA

Transfer destination

Enter the destination memory address for the data transfer.
Specify the address as a hexadecimal value as shown by the
default address 0x.00000000

Transfer destination address update
Select whether to enable transfer destination update on the
EDMA controller. When you select an option from the list, the
controller updates the transfer destination address according to
your choice. Choose one of the list entries shown in the following

table.
Option Effect on Transfer Condition
Destination Address | Indicated
None Does not change Indicates that
address after all of the
submitting the transfer | elements to
request. transfer are
located at the
same address
In memory.
Increment Increases the transfer Indicates
address by the value in | that the
Element count after elements are
submitting the transfer | contiguous,
request. with each
subsequent
element
located at
a higher
address than
the previous
element.
Decrement Decreases the transfer | Indicates
address by the value in | that the

Element count after

elements are

7-27

C6000 EDMA

Option Effect on Transfer Condition
Destination Address | Indicated

submitting the transfer | contiguous,
request. with each
subsequent
element
located at a
lower address
than the
previous
element.

Link to event
You can link EDMA transfers together to create more complicated
memory applications such as buffers and sorting routines. When
you select Link to event to enable linking, the EDMA controller
link feature reloads the current transfer parameters from PaRAM
when the previous transfer is complete.

Linked event handle
To link to another EDMA block to create more complex memory
applications, enter the device handle from the EDMA block to
link to in Linked event handle. This entry is an alphanumeric
string and the EDMA controller interprets your entry as a string.

Raise interrupt
Select this check box to direct the EDMA controller to raise an
interrupt when the transfer request completes. When you select
this parameter, you enable the Transfer complete code (-1 for
auto-allocate) option. Clearing Raise interrupt stops the controller
from raising the interrupt on TR completion.

Transfer complete code (-1 for auto-allocate)
The transfer code Indicates when the controller has submitted a
required number of transfer requests (TR). Provide an integer
from 0 and 62. On C67x processors, the code must be from 0 to
15. The default value of -1 lets the controller assign the transfer
code for this channel.

7-28

C6000 EDMA

References

See Also

When you enable this option, the EDMA controller submits
the transfer request with a request that the controller signal
completion of the transfer with this code. When the transfer is

completed, the transfer controller returns the specified code to the
EDMA controller.

After the EDMA controller receives the transfer complete code in

response to the TR, the controller uses the code to trigger another
TR or to raise an interrupt to the processor when you select Raise
interrupt.

For details about the EDMA controller, refer to TMS320C6000 DSP
Enhanced Direct Memory Access (EDMA) Controller Reference Guide,
SPRU234, available from the Texas Instruments Web site.

For an introduction to the EDMA controller, refer to TMS320C6000
Peripherals Reference Guide, SPRU190, which provides an overview of
the controller, available from the Texas Instruments Web site.

Memory Allocate, Memory Copy

7-29

C6000 Interleave

Purpose

Library

Description

h CEo00
Chb YChCr

Cr o Interleawe

Interleave

Dialog
Box

7-30

Convert planar YCbCr 4:2:2 data to interleaved YCbCr 4:2:2 data

“DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

This block takes planar YCbCr 4:2:2 data on three separate inputs and
converts them to a single interleaved YCbCr 4:2:2 data output.

The input is a planar, color separated, YCbCr 4:2:2 image represented
as a 2-D matrix of 8-bit unsigned integers. There are three input ports,
one each for the luma component (Y), blue-difference chroma component
(Cb), and red-difference chroma component (Cr). If the input to the

Y port has dimensions M*N, the input to the Cb and Cr ports must

be (M/2) by N.

The output is an interleaved YCbCr 4:2:2 image represented as a 2-D
matrix of 8-bit unsigned integers. If the dimension of the Y port is
M*N and dimensions of the Cb and Cr ports are M/2 by N, the image
dimensions of the YCbCr output dimensions are 2*M*N under normal
conditions. If you specify a line-to-line stride greater than 2*M in the
block’s mask, the output dimensions become (line-to-line stride)*N.

=] Function Block Parameters: Interleave x|

—YCbCr 4:2:2 Interleave (mazk] [link]

Creates YChCr 4:2:2 interleaved data from planar format Yv'ChCr 4:2:2 data. Line to line
stride iz the distance in butes between successive lines of interleaved YCbCr frame. [f
ling ta line stride iz greater than twice the number of pikels oh a line of ¥ plane. thiz block
outputs an interfleaved YCbCr frame whoze dimension is [[line to line stride] % (number of
linez in' plane]]. Otherwise, line stride parameter iz ighored and the output matris
dimension becomes [2 * [number of pikelz on a line of Y plane] = [humber of lines in v’
plane]].

— Parameter

Line to line stride [bytes):
32

Ok I LCancel Help Apply

C6000 Interleave
|

Line to line stride (bytes)
Use the line-to-line stride parameter to satisfy the input
requirements of the DM6437EVM Video Display block. Because of
hardware requirements, each line of the input to the DM6437EVM
Video Display block must have a size that is multiple of 32 bytes.
For example, if the image you want to display is 180 by 120, use
a line-to-line stride of 384 to satisfy the hardware requirements.
Under normal conditions, the output of the Interleave block
would have size 360x120 which would not be accepted by the
DM6437EVM Video Display block. By using a line stride of
384, the block outputs a 384 by 120 matrix—of which only the
360x120 portion contains valid data—that is readily accepted by
the DM6437EVM Video Display block.

Line-to-line stride is the distance in bytes between successive
lines of an interleaved YCbCr frame. If line-to-line stride is
greater than twice the number of pixels on a line of Y plane, this
block outputs an interleaved YCbCr frame whose dimensions
are the line-to-line stride times the number of lines in Y plane.
Otherwise, line stride parameter is ignored, and the output
matrix dimension becomes 2*(number of pixels on a line of Y
plane)*(the number of lines in Y plane).

See Also C6000 Deinterleave

7-31

C6000 IP Config

Purpose Configure Internet Protocol on C6000 targets with Ethernet ports

Librclry Target Communication Library (targetcommlib)
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2
“C6747 EVM (c6747evmlib)” on page 6-5
“DM6437 EVM (dm6437evmlib)” on page 6-6
“DM648 EVM (dm648evmlib)” on page 6-8

“Target Communication (targetcommlib)” on page 6-14

Description Adding this block to your model provides options to configure the IP
parameters for your C6000 board. Setting the options for the block
sets the address and name for your board and specifies your target
and Ethernet daughtercard.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements:

™
LE)
f
o
]
H
H

g

-
Ls]
s
o
=]
h
4

g

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-2 for more
information about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block uses dynamic addressing, getting the address from the local
server or static addressing. If you have a dynamic host configuration
protocol (DHCP) server available, you can allow the server to provide
an IP address for your board. Dynamic IP addresses can be useful but
unreliable — they can change.

To use static addressing, create a static IP address by clearing Use
DHCP to allocate an IP address for DM642 EVM (requires DHCP
server). to enable the manual IP address configuration parameters.

7-32

C6000 IP Config

Note When you use the UDP Send and Receive blocks in a model, you
must also include this block to set up the IP drivers for the Ethernet
parameters for the target networking capability.

Whether you choose to use dynamic addressing, you must set the Host
name, and select and set the Use the following CPU interrupt for
Ethernet driver (4-13) options.

When you build and run your model, this block has no effect. It outputs
zeros. When you generate code from your model, this block adds the
code that configures IP on your board.

7-33

C6000 IP Config

Dialog The block dialog box provides options on two tabs — Device Config
Box and IP Parameters.

Device Tab Options

[Z]Block Parameters: IP Config |

’, CE000 P Config [mask] (k)

Set IP configuration parameters.

Device Config | IP Parameters I
Target platform|DMEAZEVM |
Ethernet adapter daughtercardllntemal ERAL LI

TCRAP stack installation directory [uze ${Install_dir) to reference CCS installation directony):
|$[I ngtall_dirsWCEODOMWM DK

Usge the following CPU interrupt far Ethermet driver [4-13);
E
Memaory segment Far internal TCPAP stack buffers:

|SDR&M
¥ Enable status print-outs ta Stdout

ok I Cancel | Help | Apply

Target platform
Specify your C6000 target by selecting the appropriate target
board from the list. Changing the target platform changes the
entry on the Ethernet adapter daughtercard list.

Ethernet adapter daughtercard
After you select you target platform, this option lets you select
whatever daughtercard is available to implement Ethernet
communications on the target.

7-34

C6000 IP Config

TCP/IP stack installation folder
To use the UDP and TCP blocks for the board, you must install
the TMS320C6000 TCP/IP Stack from Texas Instruments. Specify
the folder where the TMS320C6000 TCP/IP Stack from Texas
Instruments is installed.

Use the following CPU interrupt for Ethernet driver (4-13)
The Ethernet driver on the DM642 can respond to any one of the
CPU interrupts from 4 to 13. Enter one valid CPU interrupt for
the driver to react to. CPU interrupt 13 is the default interrupt.

Memory segment for internal TCP/IP stack buffers
Shows you the segment in memory where the TCP/IP stack
buffers reside. For the supported boards, the default setting and
location 1s SDRAM. You can change the location by entering the
name of the memory segment to use. TCP/IP stack buffers occupy
approximately 130 kB of memory. In most cases you should
locate the TCP/IP stack buffers in external memory. Be sure that
the segment you specify here agrees with the memory segment
allocation in the target preferences block in your model.

Enable status print-outs to Stdout
Select this option to direct the block to send IP status information
to the standard output device.

7-35

C6000 IP Config

7-36

IP Parameters Options

E! Block Parameters: IP Config

Set|F configuration parameters.

’fCEDDD IF Caonfig (mask)

Device Config |

¥ Use DHCF to allocate an IP address (requires a DHCF servar):

Use the following [P address:

|1 001001002

Subnet mask:

|55 255 255 0
Gatewsy [F:

|1 001001001

Diarnain name server [P

|u_n.n.u

Domain name (less than 64 characters):

Im athwrorks net

Host narme (less than 64 characters):

Idm5429vm

0K I Cancel | Help | Al

Use DHCP to allocate an IP address (requires a DHCP server)
Selecting this parameter configures the board to get an IP address
from the local DHCP server on the network. If you select this
option and you do not have a DHCP server, the generated code
does not run correctly. Clearing this option enables all of the
IP configuration options for the block to let you define your IP

address manually.

C6000 IP Config

See Also

Use the following IP address
Specify an IP address. This value is the address that others use
to communicate with the evaluation module over IP. Use the full
XXX.XXX.XXX.XxX format.

Subnet mask
Define the subnet mask address, entering the full subnet mask in
the format xxx.xxx.xxx.xxx. Subnet masks define how many bits
of the IP address are used to identify the network.

By using 1s in all the address bits that identify the network,

the subnet mask shows you which bits define the network and
which are internal to the network. In the figure, the subnet mask
255.255.255.0 indicates that the first three octets in the address
define the network.

Gateway 1P
Enter one address for the gateway server or router that maintains
a more complete listing of the surrounding networks. Messages
that are destined for machines outside the local network are sent
to the gateway address for address resolution.

Domain name server IP
Enter the address of the server for the domain in which the target
1s a member.

Domain name
Enter the name for the domain. Without the correct domain name,
the target cannot communicate on the network within the domain.

Host name (less than 64 characters)
Enter the name of the host. Usually this value is the NetBIOS
name for the machine if it exists.

C6000 TCP/IP Receive, C6000 TCP/IP Send,

7-37

C6000 TCP/IP Receive

7-38

Purpose
Library

Description

CEnan 0

TERAF Receivd 159

TCF/F Receive

Receive message from remote IP interface
“Target Communication (targetcommlib)” on page 6-14

Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to receive messages.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-2 for more
information about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block receives the message from the specified IP address on a host
machine and passes it out the Msg port to a downstream block. There
1s no restriction on message size.

A second block output is a function call port that issues a function call
whenever a new message is available on the receive buffer.

In simulations, this block outputs a stream of data (default typeuint8_T)
from the Msg port with the first bytes set to 0xFF and the rest set to
0x00. When the function call port exists, it generates a function call
for every sample time hit.

Models that contain this block generate code for the parameters that
configure TCP/IP on the target, including the ports, buffers, and
message sizes.

C6000 TCP/IP Receive

Dialog Main Pane

Box

[=]5ource Block Pa

CE000 TCRAIP Receive [mazk] [link]

Configure TCPAP stack to receive TCP/P meszages from a remote interface
identified by a remote 1P address and a remote IP port parameter pair. Local port
parameter iz uzed to specify the listening port an the target for incoming
COnnechions.

kdain | Data typesl

Connection hipe: |Server

Remote |F addrezs and [P port to receive from [format IP address:|FP port):

|

[100.100.100.2:0
Local IP port:

|43000

TCP/IP receive butfer size:

GES
[~ Enable blocking mode

Sample time:

jot

Help

o |

Cancel |

Connection type
Connection type specifies the connection

initiation method

used for the block. This is a read-only parameter — you cannot

change it.

A Server connection creates a listening socket at the IP address
and port in Local IP port. The TCP/IP layer uses this socket
to accept incoming connection requests. Any external TCP/IP
interface that sends TCP/IP data to this block must actively seek
the connection to establish communications (the client model).

7-39

C6000 TCP/IP Receive

Remote address and IP port to receive from (format IP
Address:IP port)
Identifies the remote TCP/IP interface, by IP address and IP port,
from which the block expects to receive messages. The input
format uses the IP address and IP port identifier, separated by
a colon. IP port value ranges from 0 to 65535. Entering a 0 for
the IP port when the Connection type is Client specifies that
the TCP/IP stack automatically assigns a port to use to seek
connections.

Local IP port
This option identifies the IP port to use when Connection type
is Server and when it is Client.

When you choose Server, Local IP port specifies the well-known
port of the target TCP/IP server. Your IP port value must lie
between 1 and 65535.

When you specify Client for the connection type, Local IP port
specifies the TCP/IP address for the client socket. The IP port
value can range from 0 to 65535, where 0 specifies that the
TCP/TP stack assigns an ephemeral port automatically to seek
connections.

TCP/IP receive buffer size
Specifies the size of the buffer used for queuing incoming TCP/IP
messages. Typically, larger TCP/IP receive buffers provide a
cushion for packet drops and can improve efficiency. The compiler
allocates the TCP/IP receive buffer on the heap.

All TCP/TIP blocks that specify a common local IP port must share
a common TCP/IP receive buffer, because the size of the TCP/IP
buffer is set only for the listening socket. All active connecting
sockets inherit their buffer size value from the listening socket.

Enable blocking mode
Select this option to put the calling TCP/IP task into blocking
mode so that the block receives messages completely before

7-40

C6000 TCP/IP Receive

outputting the messages in the buffer to downstream blocks.
Blocks connected to the receive block do not execute until the
receive process completes. In blocking mode, program execution
for receiving data stops until data in the message buffer is
received.

Clearing this option puts the block in non blocking mode. The
block checks the number of bytes in the TCP/IP receive buffer and
returns output data only when the receive buffer contains more
data than requested.

The block receives or outputs data at any time. Processes do not
wait for data. Disabling blocking activates the Sample time
parameter and adds an additional function call port to the block
that indicates when the data port contains new, valid data.

Selecting blocking mode activates the Timeout parameter.

Sample Time
Use this option to specify when the block polls for new messages.
This parameter value should be positive. Setting this to a specific
value, often large, can reduce the chances of TCP/IP messages
getting dropped. The default sample time 1s 0.01 seconds.

7-41

C6000 TCP/IP Receive

Data Types Pane

m Source Block Parameters: TCP/IP Receive |

CE000 TCR/IP Receive [mazk] [link)

Canfigure TCPAP stack to receive TCRAP mezzages fram a remate interface
identified by a remote 1P address and a remate IP port parameter pair. Local port
parameter iz used to specify the listening port on the target for incoming
connections.

ET [rata wpes |

Mews data indicator: IFunctiUn call LI

Output data size:

512
COutput data type: |uint8 LI
Output signal: ISampIe bazed LI

Ok I Cancel | Help |

New Data Indicator
Use this option to specify how new data is indicated, either by a

function call or a Boolean status.

Output Data Size
Use this option to specify the size of the output data, the units
depend on the output data type.

Output Data Type
Use this option to specify the type of the output data. The value

selected can be any built-in Simulink data type.

7-42

C6000 TCP/IP Receive

Output Signal
Use this option to specify whether the output signal is to be
frame-based or sample-based.

See Also C6000 TCP/IP Send, C6000 UDP Receive, C6000 UDP Send

7-43

C6000 TCP/IP Send

7-44

Purpose
Library

Description

CEo0o
=g
TCP/IP Send

TCRAP Send

Send message to remote IP interface

“Target Communication (targetcommlib)” on page 6-14

Adding this block to your Simulink model results in generated code that
configures TCP/IP on your target to send messages.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

e Install the D.signT DSK-91C111 Ethernet adapter daughter card.

® Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-2 for more
information about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

The block sends the message to the specified IP address on a host
machine. There is no restriction on the data type of the message to be
sent, as long as it is a built-in Simulink data type. There is also no
restriction on the size of the data to be transmitted.

Models that contain this block generate code for the parameters that
configure TCP/IP on the target, including the ports, buffers, and
message sizes.

C6000 TCP/IP Send

Dialog
Box

x

— CBO00 TCRAIP Send (mazk] (link]

Canfigure TCP/IP stack to zend TCPAP meszages to a remote interface identified
bw a remate |P address and a remate [P port pair. Local port parameter iz used to
specify the listening port on the target for incoming connections. Use Len port to
zpecify the outgoing TCP/IP meszage size up to the input port width of the kMeg port
[the rest of the signal coming to Mag port will be ignored).

— Parameter

Connection bype|Server ;I

Remote |F addiezs and [P port to zend to [format IP address: P port):
[100.100.100.2:0

Local IP port:

{45000

TEPAP zend buffer size:
fF9z

Ok, I Cancel | Help | Spply

Connection type

Connection type specifies the connection initiation method
used for the block. This is a read-only parameter — you cannot
change it.

A Server connection creates a listening socket at the IP address
and port in Local IP port. The TCP/IP layer uses this socket to
accept incoming connection requests. For an external TCP/IP
interface to receive TCP/IP data from this block, it must actively
seek the connection to establish communications (the client
model).

IP Address:IP port). External interfaces that want to exchange

data with this block must be listening at the specified remote IP
address and port.

7-45

C6000 TCP/IP Send

7-46

Remote IP address and IP port to send to (format IP address:IP

port)
Identifies the remote TCP/IP interface, by IP address and IP port,
to which the block expects to send messages. The input format
uses the IP address and IP port identifier, separated by a colon.
IP port value ranges from 0 to 65535. Entering a 0 for the IP port
when the Connection type is Client specifies that the TCP/IP
stack automatically assigns a port to use to seek connections.

Local IP port
This option identifies the IP port used when Connection type
is Server.

When the connection type is Server, Local IP port specifies the
well-known port of the target TCP/IP server. The IP port value
must lie between 1 and 65535.

TCP/IP send buffer size
Specifies the size of the buffer used for queuing outgoing TCP/TP
messages. Typically, larger TCP/IP receive buffers provide a
cushion for packet drops and can improve efficiency. The compiler
allocates the TCP/IP send buffer on the heap.

All TCP/TIP blocks that specify a common local IP port must share
a common TCP/IP send buffer, because the size of the TCP/IP
buffer is set only for the listening socket. All active connecting
sockets inherit their buffer size value from the listening socket.

See Also C6000 TCP/IP Receive, UDP Send, UDP Receive

C6000 UDP Receive

Purpose
Library

Description

CEO00 1)

k=]

UDFP Receive Len
UDF Receive

Receive uint8 vector as UDP message
“Target Communication (targetcommlib)” on page 6-14

This block configures the Ethernet driver on the target to receive UDP
messages. A UDP message comes into this block from the transport
layer, usually TCP/TP. The block passes the message to the next
downstream block out the Msg port. One block output (Msg) is the data
vector from the message. A second output is a flag that indicates when
a new UDP message is available. A third output specifies the length
of the message for variable length messages.

To use this block with the C6416, or C6713 DSK targets, you must
meet the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-2 for more
information about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

This block reads a single UDP packet every sample hit. It does not
attempt to receive multiple UDP packets to fill the output vector. If the
UDP packet size is greater than the output port width parameter, UDP
messages at the Msg port are truncated. The part for the UDP packet
that does not fit into the Msg port is discarded as a result. The missing
message content cannot be retrieved. Conversely, if the UDP packet
size is smaller than the Msg port width specified, the portion of the
output vector that does not fit into the specified size is invalid data.

In non blocking mode, the data in the Msg port is not valid unless the
block issues a function call.

C6000 UDP Receive blocks operate only to generate code for the target
Ethernet driver. They do not perform any function in simulation and
their simulation outputs are zeros.

7-47

C6000 UDP Receive

Dialog
Box

Note To use the C6000 UDP Send and C6000 UDP Receive blocks,
you must include the C6000 IP Config block to configure the Ethernet
parameters for the target network. This block sets up the IP drivers for
use and must be in the model for network-related processing.

Additional options let you decide whether the UDP messages work in
blocking mode and set the sampling time for polling for new messages.

] source Block Parameters: UDI

—CE000 UDF Feceive (mask)
Configure TCF/{IF stack to recerve LIDF messages.

—Farameters

|F address to recerve from (0.0.0.0 for accepting all):

[0

|F paort ta receive from (1-65535):

|25000
Output part width (bytes):

B
UDF receive buffer size (bytes):

BES
" Enable blocking mode

Sarnple time:

|Dﬂ1

(04 I Cancel | Help

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from any IP address. Setting a specific address, not 0.0.0.0, directs
the block to accept messages from the specified address only.

C6000 UDP Receive

Selecting Enable blocking mode, disables the IP address to receive
from parameter. As a result, the block accepts messages from
any IP address. You must clear Enable blocking mode to be able
to set IP address to receive from to any value except for 0.0.0.0.
The block must be in non blocking mode to specify the address to
receive messages from via UDP.

IP port to receive from
Specify the port on this machine from which the block accepts
messages. The other end of the communication, usually a UDP
Send block, sends messages to this port. The value defaults to
25000, but the values can range from 1 to 65535.

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you
decide the message width. Set this parameter to a value as large
or larger than any message you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer in which UDP messages are stored
when received. 8192 bytes 1s the default size. You need a buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from

overflowing.

Enable blocking mode
Select this option to put the UDP receive process in blocking mode

meaning the block outputs received messages before accepting
input new messages. In blocking mode, program execution for
receiving data stops until data in the buffer is sent. In non
blocking mode, the block receives data or sends data at any time.
Processes do not wait for data.

Sample time (seconds)
Use this option to specify when the block polls for new messages.

The value entered here should always be greater than zero.
Setting this to a specific value, often large, can reduce the chances

7-49

C6000 UDP Receive

of UDP messages getting dropped. The default sample time is
0.01 seconds.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Send

7-50

C6000 UDP Send

Purpose

Library

Description

Msg

Len

CEnoo

UDP Send

UDP Send

Send UDP message to host
“Target Communication (targetcommlib)” on page 6-14

The UDP send block configures the target’s on-board Ethernet driver
to receive a uint8 vector that it sends as a UDP message to the host.
Models can contain only one C6000 UDP Send block.

To use this block with the C6416, C6713, or C6713 DSK targets, you
must meet the following requirements.

¢ Install the D.signT DSK-91C111 Ethernet adapter daughter card.

¢ Configure the daughter card. Refer to “Configuring the D.signT
DSK-91C111 to Use TCP/IP and UDP” on page A-2 for more
information about configuring the card.

e Install the Texas Instruments TMS320C6000 TCP/IP stack software.

Msg input format must be a uint8 vector with UDP format. To use
variable length messages, supply the message length for each message
as input to the Len port. Message length can be any integer value in
bytes up to the input width of signal at the Msg port.

C6000 UDP Send blocks operate only to generate code for the target
Ethernet driver. They do not perform any function in simulation and
they output zero.

Note To use the UDP Send and Receive blocks, for network processing,
you must include the C6000 IP Config block to set up the IP drivers
for the target Ethernet network.

7-51

C6000 UDP Send

Dialog
Box

E! Sink Block Parameters: UDP Send il
—ChO00 LUDP Send (mask)

Configure TCP/IP stack to send UDF messages to a remote interface identified
by IF address and IF port pair. Use 'Len’ port to specify UDF packetsizes uptoa
maxirnurm of the width of input signal going inta the 'Msg' port. The UDP packet
length is limited to & maximum of 1,472 bytes.

—Farameters

Remote IF port to send to (1-65535):

25000

Use the following local IF port (-1 for automatic port assignment):
1

¥ Show input port far number of bytes to be sent

oK I Cancel | Help | Al |

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
If you enter the address 255.255.255.255, the block broadcasts
message to any listening IP address. If you enter a specific
IP address, you limit the block to sending the message to the
specified address.

Remote IP port to send to (1-65535)
Specify the port on the host to which the block sends the message.
Port numbers range from 1 to 65535.

Note This port designation must match the port number where
you configure the host to receive UDP messages.

7-52

C6000 UDP Send

Use the following local IP port (-1 for automatic port
assignment)
Specify the local IP port the block sends the message from. If you
accept the default value of 1, the network automatically selects
the local IP port for sending the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address in this parameter.
If you entered a port number in the UDP Receive block option
Remote IP port to receive from, enter that port identifier in
this parameter also.

Show input port for the number of bytes to be sent
Adds a block input port that lets you specify the number of bytes
to send for each UDP message. The maximum allowed value is
1472 bytes. Use the input to dynamically the change the length
of each message if necessary.

See Also C6000 TCP/IP Receive, C6000 TCP/IP Send, C6000 UDP Receive

7-53

C62x Avutocorrelation

7-54

Purpose

Library

Description

TI CEZx

! i
AUTOCOR
Autocorrelation

Dialog
Box

Autocorrelate input vector or frame-based matrix

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Autocorrelation block computes the autocorrelation of an

input vector or frame-based matrix. For frame-based inputs, the
autocorrelation is computed along each of the input’s columns. The
number of samples in the input channels must be an integer multiple of
eight. Input and output signals are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian

code generation only.

Block Parameters: Autocorrelation]

—Autocormelation [maszk] (link)

Compute the autocarnelation of vectors or frame-bazed matrices. For
frame-bazed inputs. compute along the input's columns. Input channels
muzt have a multiple of eight zamples. Input and output are real and G.15.

YWhen zet to Compute all non-negative lags', compute using lags in the
range [0, lengthlinput]-1]. Othensize, compute uzsing lags in the range [0,
maxlag). The walue of maxLag must be odd and iz specified in "M aximurn
non-negative lag'

— Parameters
¥ Compute all non-negative lags

T aximur non-negative lag (less that input [enath;

I

Cancel | Help | Spply |

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed
using all nonnegative lags, where the number of lags is one less
than the length of the input. The lags produced are therefore
in the range [0, length(input)-1]. When this parameter is not
selected, you specify the lags used in Maximum non-negative
lag (less than input length).

C62x Avutocorrelation

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in
performing the autocorrelation. The lags used are in the range [0,
maxLag]. The maximum lag must be odd. Enable this parameter
by clearing the Compute all non-negative lags parameter.

Algorithm In simulation, the Autocorrelation block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_autocor.
During code generation, this block calls the DSP_autocor routine to
produce optimized code.

7-55

C62x Bit Reverse

7-56

Purpose
Library

Description

TI CE2x

g

BITREW_CFLX

Bit Reverse

Dialog
Box

Algorithm

Examples

Bit-reverse elements of each complex input signal channel
“C62x DSP Library (tic62dsplib)” on page 6-9, “Transforms” on page 6-11

The Bit Reverse block bit-reverses the elements of each channel of a
complex input signal, X. The Bit Reverse block is primarily used to
provide correctly-ordered inputs and outputs to or from blocks that
perform FFTs. Inputs to this block must be 16-bit fixed-point data types.

The Bit Reverse block supports discrete sample times and little-endian
code generation only.

Block Parameters: Bit Reverse B

Bit Reverze [mazk]

Bit reverze the positions of the elements of a complex input vector. The
length of the input vector must be a power of kwo. Inputs can be of any
1E-bit fixed-point data type.

Cancel | Help | Apply |

In simulation, the Bit Reverse block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bitrev_cplx.
During code generation, this block calls the DSP_bitrev_cplx routine
to produce optimized code.

The Bit Reverse block reorders the output of the C62xRadix-2 FFT in
the model below to natural order.

@ stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _En15 () [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

The following code calculates the same FFT in the workspace. The
output from this calculation, y2, is displayed side-by-side with the

output from the model, c. The outputs match, showing that the Bit
Reverse block reorders the Radix-2 FFT output to natural order:

C62x Bit Reverse

See Also

zeros(n,

x2 = complex(xr, xi);

y2 = fft(x2);

y €]
0.5000
0.4619 -
0.3536 -
0.1913 -
0 -
-0.1913 -
-0.3536 -
-0.4619 -
-0.5000
-0.4619
-0.3536
-0.1913
0
0.1913
.3536
0.4619

O OO O0OO0OO0oOOo

o
+ 4+ 4+ 4+ 4+ 4+ 4+

O OO O0OO0OO0oOOo

C62xRadix-2 FFT,

¥

.19131
.35361
.46191
.50001
.46191
.35361
.19131

.19131
.35361
.46191
.50001
.46191
.35361
.19131

o O oo

-0.
-0.
-0.
-0.
-0.
-0.
-0.

o

.5000
.4619
.3535
.1913

0
1913
3535
4619
5000
4619
3535
1913

0

.1913
.3535
.4619

+ + + 4+ + + +
Oo0oooooo

C62xRadix-2 IFFT

[N elNeNelNolNolNo]

.19131
.35351
.46191
.50001
.46191
.35351
.19131

.19131
.35351
.46191
.50001
.46191
.35351
.19131

7-57

C62x Block Exponent

Purpose

Library

Description

TI CE2x

! i
BEXF
Blodk Exponent

Dialog
Box

Algorithm

7-58

Minimum number of extra sign bits in each input channel

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Block Exponent block first computes the number of extra sign bits
of all values in each channel of an input signal, and then returns the
minimum number of sign bits found in each channel. The number of
elements in each input channel must be even and at least six. All input
elements must be 32-bit signed fixed-point data types. The output is

a vector of 16-bit integers — one integer for each channel of the input
signal.

This block is useful for determining whether every sample in a channel
1s using extra sign bits. If so, you can scale your signal by the minimum
number of extra sign bits to eliminate the common extra bits. This
increases the representable precision and decreases the representable
range of the signal.

The Block Exponent block supports both continuous and discrete

sample times. This block supports little-endian code generation only.

Block Parameters: Block Exponent B

Block Exponent [magk] [link]

Compute the exponents [number of extra sign bitz] of all values in each
channel of the input signal and return the mininum exponent faund in
each channel. The number of elements in each input channel must be
even and at least iz All input elements must be signed 32-bit fiked-point
data types. The block outputs a wector of 16-bit integers, one integer for
each channel of the input signal.

Cancel | Help | Lpply |

In simulation, the Block Exponent block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_bexp. During
code generation, this block calls the DSP_bexp routine given to produce
optimized code.

C62x Complex FIR

Purpose
Library

Description

TI CE2x

E i
FIR_CFL¥
Complex FIR

Dialog
Box

Filter complex input signal using complex FIR filter
“C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10

The Complex FIR block filters a complex input signal X using a complex
FIR filter. This filter is implemented using a direct form structure.

The number of FIR filter coefficients, which are given as elements of the
input vector H, must be even. The product of the number of elements
of X and the number of elements of H must be at least four. Inputs,
coefficients, and outputs are all Q.15 data types.

The Complex FIR block supports discrete sample times and little-endian
code generation only.

Block Parameters: Complex FIR B

— Complex FIR [magk)] [link]

Filter a complex input signal =, having MNx samples per channel. using a
complex FIF filker. The filter coefficients are specified by a complex vectar
H, with an even number of elements MH. The product MH*M must be at
least four. Input signale, coefficients, and output signalz are all (.15 data
types.

— Parameters
Coefficient source: ISpecif_lrl via dialag j

Coefficients [H):
Icomplex[[ﬂ.'l, 0.2.0.2.01]

Initial conditions:
o

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog

® Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X.

7-59

C62x Complex FIR

7-60

Algorithm

See Also

Coefficients (H)
Designate the filter coefficients in vector format. There must be
an even number of coefficients. This parameter is only visible
when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

You may enter real-valued initial conditions. Zero-valued
imaginary parts will be assumed.

In simulation, the Complex FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_cplx.
During code generation, this block calls the DSP_fir_cplx routine to
produce optimized code.

C62xGeneral Real FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

C62x Convert Floating-Point to Q.15

Purpose
Library

Description

‘TI CEZx
i
FLTOR1S

Conwert Floating-
Fointto 215

Dialog
Box

Algorithm

See Also

Convert single-precision floating-point input signal to Q.15 fixed-point
“C62x DSP Library (tic62dsplib)” on page 6-9, “Conversions” on page 6-9

The Convert Floating-Point to Q.15 block converts a single-precision
floating-point input signal to a Q.15 output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Block Parameters: Convert Floating- Point to Q.15 B

Convert Floating-Point to .15 [maszk]

Convert a single-precision floating-point signal to a 0.15 signal. Both real
and comples inputs are allowed. Howewer, for real inputs anly, the botal
number of input samples must be even,

Cancel | Help | Spply |

In simulation, the Convert Floating-Point to Q.15 block is equivalent to
the TMS320C62x DSP Library assembly code function DSP_f1toq15.
During code generation, this block calls the DSP_f1toq15 routine to
produce optimized code.

C62xConvert Q.15 to Floating Point

7-61

C62x Convert Q.15 to Floating-Point

7-62

Purpose
Library

Description

TI CE2x

g

Q15TOFL

Convert Q.15
to Floating-Foint

Dialog
Box

Algorithm

See Also

Convert Q.15 fixed-point signal to single-precision floating-point
“C62x DSP Library (tic62dsplib)” on page 6-9, “Conversions” on page 6-9

The Convert Q.15 to Floating-Point block converts a Q.15 input signal
to a single-precision floating-point output signal. Input can be real or
complex. For real inputs, the number of input samples must be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Block Parameters: Convert .15 to Floating-Poinkt]

Coreeert .15 to Floating-Paoint [mask)

Convert & (.15 signal to a single-precizion floating-paint signal. Baoth real
and complex inputs are allowed. However, for real inputs only, the tatal
number of input zamples must be even,

Cancel | Help | Lpply |

In simulation, the Convert Q.15 to Floating-Point block is equivalent to
the TMS320C62x DSP Library assembly code function DSP_q15tof1l.
During code generation, this block calls the DSP_q15tofl routine to
produce optimized code.

C62xConvert Floating-Point to Q.15

C62x FFT

Purpose
Library

Description

Tl CG2x

! i
FFT16X16R
FFT

Decimation-in-frequency forward FFT of complex input vector
“C62x DSP Library (tic62dsplib)” on page 6-9, “Transforms” on page 6-11

The FFT block computes the decimation-in-frequency forward FFT,
with scaling between stages, of each channel of a complex input signal.
The input length of each channel must be both a power of two and in the
range 8 to 16,384, inclusive. The input must also be in natural (linear)
order. The block outputs a complex signal in natural order. Inputs and
outputs are signed 16-bit fixed-point data types.

The fft16x16r routine used by this block employs butterfly stages to
perform the FFT. The number of butterfly stages used, S, depends on
the input length L = 27k. If k is even, then S = k/2. If k is odd, then
S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and
this block performs all S stages with radix-4 butterflies to compute
the output. If k is odd, then L is a power of two but not a power of
four. In that case this block performs the first (S-1) stages with radix-4
butterflies, followed by a final stage using radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two
scaling on the output of each stage except for the last. Therefore, to
ensure that the gain of the block matches that of the theoretical FFT,
the FFT block offsets the location of the binary point of the output
data type by (S-1) bits to the right relative to the location of the binary
point of the input data type. That is, the number of fractional bits of
the output data type equals the number of fractional bits of the input
data type minus (S-1).

OutputFractionalBits = InputFractionalBits — (5§ -1)

The FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

7-63

C62x FFT

Dialog
Box

Algorithm

See Also

7-64

FFT (mask] {ink)

Compute the decimation-in-frequency forsard FFT of a comples input
wectar, The input wector must be in natural (inear] arder. The input length
muzt be in the range 8 to 16384, inclusive, and muszt be & power of bwo.
The complex output wector iz in natural (inear] order. Inputs and outputs
are signed 1E-bit fixed-point data types.

Cancel | Help | Apply |

In simulation, the FFT block is equivalent to the

TMS320C62x DSP Library assembly code function DSP_fft16x16r.
During code generation, this block calls the DSP_fft16x16r routine
to produce optimized code.

C62xRadix-2 FFT, C62xRadix-2 IFFT

C62x General Real FIR

Purpose
Library

Description

TI CE2x

E i
FIR_ZEN
zeneral Real FIR

Dialog
Box

Filter real input signal using real FIR filter

“C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10
The General Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The filter coefficients are specified by a real vector H, which must
contain at least five elements. The coefficients must be in reversed
order. All inputs, coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and

supports little-endian code generation only.

Block Parameters: General Real FIR B

— General Real FIR [mazk] (link)

Filter a real input signal & uzing a real FIR filker. The fiker coefficients are
specified by a real vectar H. which must contain at least five elements.
The coefficients must be in reversed order. Input signals, coefficients, and
output signals are all 0.15 data types.

— Parameters

Coefficient zource: ISpeCif}' via dialog j

Coefficients [H):
0102030405

Initial conditions:
jo

Cancel | Help | Apply |

Coefficient source

Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog

® Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

7-65

C62x General Real FIR

7-66

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir gen.
During code generation, this block calls the DSP_fir_gen routine to
produce optimized code.

See Also C62xComplex FIR, C62xRadix-4 Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

C62x LMS Adaptive FIR

Purpose
Library

Description

4 ttl
B

FIRLMSZ

TI CE2
XR [

LS Adaptive FIR

LMS adaptive FIR filtering
“C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10

The LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form
structure.

The following constraints apply to the inputs and outputs of this block:

® The scalar input X must be a Q.15 data type.
® The scalar input B must be a Q.15 data type.
e The scalar output R is a Q1.30 data type.

¢ The output H has length equal to the number of filter taps and is a
Q.15 data type. The number of filter taps must be a positive, even
integer.

This block performs LMS adaptive filtering according to the equations
e(n+1) =dn+1)-[H(n) - X(n+1)]

and
H(n+1) = Hn)+[pe(n+1)-X(n+ 1)]

where

® 1 designates the time step.
e X is a vector composed of the current and last n H — 1 scalar inputs.

e d is the desired signal. The output £ converges to d as the filter
converges.

e H is a vector composed of the current set of filter taps.

e eis the error, or @ — [H(n) - X(n +1)],

H is the step size.

7-67

C62x LMS Adaptive FIR

7-68

For this block, the input B and the output R are defined by
B = pe(n+1)

R =Hin)-X(n+1)

which combined with the first two equations, result in the following
equations that this block follows:

ein+1l)=dn+1)-R

Hin+1) = Hn)+[B-X(n+1)]

d and B must be produced externally to the LMS Adaptive FIR block.
Refer to Examples below for a sample model that does this.

The LMS Adaptive FIR block supports discrete sample times and
supports little-endian code generation only.

The rounding mode used is floor, and the saturation mode is wrap. All
intermediate products have s32Q30 data type. The update equation is
as follows:

H; = H; +S16Q15(S32Q30(B) x$32Q30(X;))
R=)(X;xH,)
N

where N is the number of filter taps.

Note This block does not implement a leaky LMS algorithm, so
comparison to the leakage factor of the LMS block of the Signal
Processing Blockset software is not appropriate.

C62x LMS Adaptive FIR

Dialog
Box

Algorithm

Examples

=] Function Block Parameters: LMS Adaptive FIR x|

— LMS Adaptive FIR [mazk] (link]

Ferform least-mean-zquare [LM5] adaptive FIR fikering. The number of FIR filker taps
muzt be & pozitive multiple of 4. The zcalar inputs < and B must be 015 data types.
The scalar output F iz a 01,30 data type. The output H has length equal to the
number of filter taps and iz a 0.15 data type.

— Parameter.

Mumber of FIR filter taps:
Iritial walue of filker taps:
[
v Output filter taps

] I Cancel | Help | Spply |

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be
a positive, even integer.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If you select this option, the filter taps are produced as output H.
If not selected, H is suppressed.

In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_firlms2.

During code generation, this block calls the DSP_firlms2 routine to
produce optimized code.

The following model uses the LMS Adaptive FIR block.

7-69

C62x LMS Adaptive FIR

double [~ single X) o OBEFR g d
i " A
Random Data Type Conversion Digital Filter
Source r — — — —— — — — B 1
-))
L stint0_Ent4 | e sfinto_Ent3

Subtract Gain
- ‘;rl B | sfixd2_En0

stixi6 s [54xi]

Sonvert

Convert

Signal To
Wintepace

| | FIRLME2 "
LhS Adaptive FIR

| 1

g ~ e
Sflb_Enid | o
L

The portion of the model enclosed by the dashed line produces the
signal B and feeds it back into the LMS Adaptive FIR block. The inputs
to this region are X and the desired signal d, and the output of this
region is the vector of filter taps H. Thus this region of the model acts
as a canonical LMS adaptive filter. For example, compare this region
to the adaptfilt.1lms function in Filter Design Toolbox software.
adaptfilt.1lms performs canonical LMS adaptive filtering and has the
same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input B in
some way similar to the one shown here. You must also provide the
signals X and d. This model simulates the desired signal d by feeding
X into a digital filter block. You can simulate your desired signal in a

similar way, or you may bring d in from the workspace with a From
Workspace or codec block.

7-70

C62x Matrix Multiply

Purpose

Library

Description

A II CHZ:
Q R
B
hAAT_mLL
o atriz bultiply

Matrix multiply two input signals

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Matrix Multiply block multiplies two input matrices A and B.
Inputs and outputs are real, 16-bit, signed fixed-point data types. This
block wraps overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator
value. The Matrix Multiply block, however, only outputs 16 bits.
You can choose to output the highest or second-highest 16 bits of the
accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in
the accumulator value is the sum of the fractional bits of the two inputs.

Accumulator
Input A Input B Value
Total Bits 16 16 32
Fractional R S R+ S

Bits

Therefore R+S is the location of the binary point in the accumulator
value. You can select 16 bits in relation to this fixed position of the
accumulator binary point to give the desired number of fractional bits
in the output (see Examples below). You can either require the output
to have the same number of fractional bits as one of the two inputs, or
you can specify the number of output fractional bits in the Number of
fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

7-71

C62x Matrix Multiply

L]
Dla |og Block Parameters: Matrix Multiply]
Box — M atrix Multiply (mazk] [link)

Perform matris multiplication v'=4*B. Inputz & and B must be real. Al input
and output signals are signed 16-bit fised-point data types. Intermediate
accumulations have 32 bits [b31:b0) and wrap when overflow ocours..

— Parameters

Set fractional bits in output to: IMat.:h irpLt &, j

Humber of fractional bits in output:
15

Cancel | Help | Lpply |

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Choose which 16 bits to output from the list:

e Match input A — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input A (or R in the discussion
above).

e Match input B — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input B (or S in the discussion
above).

® Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value.

® Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value.

e User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter.

7-72

C62x Matrix Multiply

Algorithm

Examples

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is enabled only when you select
User-defined for Set fractional bits in output to.

In simulation, the Matrix Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_mul.
During code generation, this block calls the DSP_mat_mul routine to
produce optimized code.

Example 1

Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30).
In the accumulator, bits 31:30 are the sign and integer bits, and bits
29:0 are the fractional bits. The following table shows the resulting
data type and accumulator bits used for the output signal for different
settings of the Set fractional bits in output to parameter.

Set fractional bits | Data Type Accumulator Bits
in output to

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of | Q1.14 b31:b16

acc.

Match high bits of | Q.15 b30:b15

prod.

Example 2

Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator,
bits 31:8 are the sign and integer bits, and bits 7:0 are the fractional
bits. The following table shows the resulting data type and accumulator
bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

7-73

C62x Matrix Multiply

7-74

See Also

Set fractional bits | Data Type Accumulator Bits
in output to

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of | Q23.-8 b31:b16

acc.

Match high bits of | Q22.-7 b30:b15

prod.

C62xVector Multiply

C62x Matrix Transpose

Purpose

Library

Description

TI CE2x

o4

MAT_TRAMNS

 atriz Transpose

Dialog
Box

Algorithm

Matrix transpose input signal

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Matrix Transpose block transposes an input matrix or vector. A
1-D input is treated as a column vector and is transposed to a row
vector. Input and output signals are any real, 16-bit, signed fixed-point
data type.

The Matrix Transpose block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Note If you use Target Function Library (TFL) technology with this
block, the TI compiler generates processor and compiler-specific
instructions that improve the performance of the generated code. For
more information, consult“Introduction to Target Function Libraries”.

Block Parameters: Matrix Transpose]

F atrix Transpoze (mazk] [link)

Compute the matris transpose. Yector input signalz are treated as [Mx1]
matrices. The output iz always a matriz. The input and output data types
may be any real signed 16-bit fixed-point data type.

Cancel | Help | Apply |

In simulation, the Matrix Transpose block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mat_trans.
During code generation, this block calls the DSP_mat_trans routine
to produce optimized code.

7-75

C62x Radix-2 FFT

7-76

Purpose
Library

Description

Tl CEZx

4

RADLEZ

Radix2 FFT

Dialog
Box

Algorithm

Examples

Radix-2 decimation-in-frequency forward FFT of complex input vector
“C62x DSP Library (tic62dsplib)” on page 6-9, “Transforms” on page 6-11

The Radix-2 FFT block computes the radix-2 decimation-in-frequency
forward FFT of each channel of a complex input signal. The input
length of each channel must be both a power of two and in the range 16
to 32,768, inclusive. The input must also be in natural (linear) order.
The output of this block is a complex signal in bit-reversed order. Inputs
and outputs are signed 16-bit fixed-point data types, and the output
data type matches the input data type.

You can use the C62x Bit Reverse block to reorder the output of the
Radix-2 FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Block Parameters: Radix-2 FFT]
Fadiz-2 FFT [mazk] [link]

Compute the radis-2 decimation-in-frequency forward FFT of a comples
input vector. The input vectar must be in natural (linear) arder. The input
lenath riuzt be in the range 16 ta 32768, inclusive, and must be & power
of two. The output vector iz complex and in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

Cancel | Help | Apply |

In simulation, the Radix-2 FFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

The output of the Radix-2 FFT block is bit-reversed. This example
shows you how to use the C62x Bit Reverse block to reorder the output
of the Radix-2 FFT block to natural order.

C62x Radix-2 FFT

See Also

w2

Constant

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed
side-by-side with the output from the model, c. The outputs match,
showing that the Bit Reverse block does reorder the Radix-2 FFT block

stin 16 _Enif (o) [16x1

RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _En15 () [16x1

Radis=2 FFT

output to natural order:

k = 4;

n = 2"k;

Xr = zeros(n, 1);

xr(2) = 0.5;

xi = zeros(n, 1);

x2 = complex(xr, xi);

y2 = fft(x2);

[y2, c]
0.5000
0.4619 - 0.19131i
0.3536 - 0.3536i
0.1913 - 0.4619i

0 - 0.50001
-0.1913 - 0.4619i
-0.3536 - 0.3536i
-0.4619 - 0.19131i
-0.5000
-0.4619 + 0.19131i
-0.3536 + 0.3536i
-0.1913 + 0.4619i
0 + 0.50001

0.1913 + 0.4619i
0.3536 + 0.35361
0.4619 + 0.19131i

C62x Bit Reverse, C62x FFT, C62x Radix-2 IFFT

o O oo

-0.
-0.
-0.
-0.
-0.
-0.
-0.

0.
0.
0.

.5000
.4619
.3535
.1913

0
1913
3535
4619
5000
4619
3535
1913

0
1913
3535
4619

Bit Reverse

+ + 4+ + + + +
Oo0oooooo

OO OO0 OoOo

.19131
.35351
.46191
.50001
.46191
.35351
.19131

.19131
.35351
.46191
.50001
.46191
.35351
.19131

Signal Ta
Matepaca?

7-77

C62x Radix-2 IFFT

7-78

Purpose
Library

Description

Tl CEZx

! i
RADLEZ
Radix2 IFFT

Dialog
Box

Radix-2 inverse FFT of complex input vector
“C62x DSP Library (tic62dsplib)” on page 6-9, “Transforms” on page 6-11

The Radix-2 IFFT block computes the radix-2 inverse FFT

of each channel of a complex input signal. This block uses a
decimation-in-frequency forward FFT algorithm with butterfly weights
modified to compute an inverse FFT. The input length of each channel
must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are
signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length
L=22k. To ensure that the gain of the block matches that of the
theoretical IFFT, the Radix-2 IFFT block offsets the location of the
binary point of the output data type by k bits to the left relative to the
location of the binary point of the input data type. That is, the number
of fractional bits of the output data type equals the number of fractional
bits of the input data type plus k.

OutputFractionalBits = InputFractionalBits + (k)

You can use the C62x Bit Reverse block to reorder the output of the
Radix-2 IFFT block to natural order.

The Radix-2 TFFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

Block Parameters: Radiz-2 IFFT B

Radix-2 IFFT [mask) (link)

Compute the radis-2 inverse FFT of a complex input vector. The block
uzes aradis-2 decimation-in-frequency forvward FET algarithm with butterfly
weights modified to compute an inverse FFT. The input vector must be in
natural (linear] arder. The input length must be in the range 16 to 32768,
inclugive, and must be a power of bao. The complex output vector iz in
bit-reversed order. Inputs and outputs are signed 16-bit fixed-point data
types.

TTHETTTY Cancel Help Apply

C62x Radix-2 IFFT
|

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

See Also C62x Bit Reverse, C62x FFT, C62x Radix-2 FFT

7-79

C62x Radix-4 Real FIR

Purpose
Library

Description

TI CE2x

E i
FIR_FR<
Radix<4 Feal FIR

Dialog
Box

Filter real input signal using real FIR filter
“C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10

The Radix-4 Real FIR block filters a real input signal X using a real FIR
filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector, H. The number of filter
coefficients must be a multiple of four and must be at least eight. The
coefficients must also be in reversed order. All inputs, coefficients, and
outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and
supports little-endian code generation only.

Block Parameters: Radix-4 Real FIR B

— Radis-4 Real FIR [mask] [link)

Filter a real input signal ¥ uzing a real FIR filter. The number of input
zamples per channel must be even. The filter coefficients are specified by
a real wector H. The number of coefficients must be a multiple of four and
muszt be at least eight. The coefficients must be in reversed order. Input
zignals, coefficients, and output signalz are all .15 data types.

— Parameters
Coefficient source: ISpecif_lrl via dialag j

Coefficients [H):
I[D.'I 020304050607 0.8]

Initial conditions:
o

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

C62x Radix-4 Real FIR
|

e Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

e All the same, enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir r4. During
code generation, this block calls the DSP_fir_r4 routine to produce
optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-8 Real FIR,
C62xSymmetric Real FIR

7-81

C62x Radix-8 Real FIR

Purpose Filter real input signal using real FIR filter
Librclry “C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10
Description The Radix-8 Real FIR block filters a real input signal X using a real FIR

filter. This filter is implemented using a direct form structure.

TI ChZx
L The number of input samples per channel must be even. The filter
coefficients are specified by a real vector, H. The number of coefficients
must be an integer multiple of eight. The coefficients must be in
reversed order. All inputs, coefficients, and outputs are Q.15 signals.

FIR_R&
Radix-& Real FIR

The Radix-8 Real FIR block supports discrete sample times and
little-endian code generation only.

Dia Iog Block Parameters: Radix-8 Real FIR B
Box — Radis-8 Real FIR [mazsk] [link)

Filter a real input signal ¥ uzing a real FIR filter. The number of input
zamples per channel must be even. The filter coefficients are specified by
areal wector H. The number of coefficients must be an integer multiple of
eight. The coefficients must be in reversed order. Input signals,
coefficients, and output signals are all (.15 data types.

r— Parameters
Coefficient source: ISpecif_lrl via dialag j
Coefficients [H):
|[D.1 0203040506070.8]

Initial conditions:
o

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

® Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

7-82

C62x Radix-8 Real FIR

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir r8. During
code generation, this block calls the DSP_fir_r8 routine to produce
optimized code.

See Also C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xSymmetric Real FIR

7-83

C62x Real Forward Lattice All-Pole IIR

Purpose Filter real input signal using lattice filter
Librclry “C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10
Description The Real Forward Lattice All-Pole IIR block filters a real input signal

using an autoregressive forward lattice filter. The input and output
signals must be the same 16-bit signed fixed-point data type. The
I@ * reflection coefficients must be real and Q.15. The number of reflection

Tl CEZx

HRLAT coefficients must be greater than or equal to four, and they must be
Real Fanward Lattice in reversed order. Use an even number of reflection coefficients to
All-Pole IR

maximize the speed of your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample
times and supports little-endian code generation only.

Dia Iog Block Parameters: Real Forward Lattice All-Pole IIR B
Box — Real Forward Lattice All-Paole IR [maszk] [link]

Filter a real input signal using an auto-regressive (AR fonward lattice filker,
The input] and output [R] signals must be the same 16-bit zsigned
fixed-point data type. The reflection coefficients (K] must be real and 0.15.
The number of reflection coefficients must be greater than or equal to four,
and they must be in reverzed order.

— Parameters
Coefficient source: | Specify via dialog j

Reflection coefficients:
I[-D.8228 (02045 -0.0527 -0.0625]

Initial conditions:
o

Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the
Reflection coefficients parameter in the dialog

® Input port — Accept the coefficients from port K

7-84

C62x Real Forward Lattice All-Pole IIR

Algorithm

See Also

Reflection coefficients
Designate the reflection coefficients of the filter in vector format.
The number of coefficients must be greater than or equal to four,
and they must be in reverse order. Using an even number of
reflection coefficients maximizes the speed of your generated code.
This parameter is visible when you select Specify via dialog
for the Coefficient source parameter. This parameter is tunable
in simulation.

Initial conditions
If your block initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length (number of elements) of this vector must be the same as
the number of reflection coefficients in your filter.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows (initial conditions for one
channel) of this matrix must be the same as the number of
reflection coefficients, and the number of columns of this matrix
must be equal to the number of channels.

In simulation, the Real Forward Lattice All-Pole IIR block is equivalent
to the TMS320C62x DSP Library assembly code function DSP_iirlat.
During code generation, this block calls the DSP_iirlat routine to
produce optimized code.

C62xReal TIR

7-85

C62x Real IIR

Purpose Filter real input signal using IIR filter
Librclry “C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10
Description The Real IIR block filters a real input signal X using a real

autoregressive moving-average (ARMA) IIR Filter. This filter is
T CEZx . . .
@ implemented using a direct form I structure.
b

There must be five AR coefficients and five MA coefficients. The first

IR
Feal IR AR coefficient is always assumed to be one. Inputs, coefficients, and
output are Q.15 data types.
The Real IIR block supports discrete sample times and supports
little-endian code generation only.
Dialog
Box —Real IR [maszk] (link]

Filter a real input signal ¥ using a real auto-regressive moving-average
[ARKMA] IR fiker, There must be five AR coefficients and five Ma
coefficients; hawewver, the first AR coefficient iz azsumed to be equal to
ohe. Inputs, coefficients, and output are all .15 data types.

— Parameters

Coefficient zources: ISpeGif}' wia dialog j

MA [humerator) coefficients:
|[u.1 0.20.30.405]

AR [denominator] coefficients:
|[1 01020304

Input state intial conditions:
jo

Output state initial conditions:
jo

Cancel | Help | Apply |

Coefficient sources
Specify the source of the filter coefficients:

7-86

C62x Real IIR

e Specify via dialog — Enter the coefficients in the
MA (numerator) coefficients and AR (denominator)
coefficients parameters in the dialog

® Input ports — Accept the coefficients from ports MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector
format. There must be five MA coefficients. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector
format. There must be five AR coefficients, however the first AR
coefficient is assumed to be equal to one. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the input state initial conditions for one
channel. The length of this vector must be four.

¢ Different across channels, enter a matrix containing all input
state 1nitial conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the output state initial conditions for one
channel. The length of this vector must be four.

¢ Different across channels, enter a matrix containing all output
state 1nitial conditions. This matrix must have four rows.

7-87

C62x Real IIR

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_iir. During
code generation, this block calls the DSP_iir routine to produce
optimized code.

See Also C62xReal Forward Lattice All-Pole IIR

7-88

C62x Reciprocal

Purpose

Library

Description

%3

RECIF1G

Tl CEZ
“Fh

Reciprocal

Dialog
Box

Algorithm

Fraction and exponent portions of reciprocal of real input signal

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Reciprocal block computes the fractional (F) and exponential (E)
portions of the reciprocal of a real Q.15 input, such that the reciprocal
of the input is F*(2F). The fraction is Q.15 and the exponent is a 16-bit
signed integer.

The Reciprocal block supports both continuous and discrete sample
times. This block also supports little-endian code generation only.

Block Parameters: Reciprocal]

Recipracal [mazk] [link]

Compute the fractional [F] and exponential E] portions of the reciprocal of
a real (.15 input, such that the recipracal of the input iz F(2°E). The
fraction iz 0.15 and the exponent is a signed 16-bit integer.

Cancel | Help | Apply |

In simulation, the Reciprocal block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_recip16.
During code generation, this block calls the DSP_recip16 routine to
produce optimized code.

7-89

C62x Symmetric Real FIR

7-90

Purpose
Library

Description

TI CE2x

¢

FIR_SvM

Symmetric Real FIR

Filter real input signal using FIR filter
“C62x DSP Library (tic62dsplib)” on page 6-9, “Filters” on page 6-10

The Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct
form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector H, which must be symmetric
about its middle element. The number of coefficients must be of the
form 16k + 1, where k is a positive integer. This block wraps overflows
that occur. The input, coefficients, and output are 16-bit signed
fixed-point data types.

Intermediate multiplies and accumulates performed by this filter
result in a 32-bit accumulator value. However, the Symmetric Real
FIR block only outputs 16 bits. You can choose to output 16 bits of the
accumulator value in one of the following ways.

Match input x Output 16 bits of the accumulator
value such that the output has the
same number of fractional bits as the
input

Match coefficients h Output 16 bits of the accumulator
value such that the output has the
same number of fractional bits as the

coefficients
Match high 16 bits of Output bits 31 - 16 of the accumulator
acc. value

C62x Symmetric Real FIR

Dialog
Box

Match high 16 bits of Output bits 30 - 15 of the accumulator
prod. value
User-defined Output 16 bits of the accumulator

value such that the output has the
number of fractional bits specified in
the Number of fractional bits in
output parameter

The Symmetric Real FIR block supports discrete sample times and

only little-endian code generation.

Block Parameters: Symmetric Real FIR %]

— Surmetric: Real FIR [maszk] [link)

Filter a real input signal ¥ uzing a symmetric real FIR fiter. The number of
input zamples per channel must be even. The filker coefficients are
zpecified by a real vector H, which must be symmetric about its middle
element. The nurmber of elements in H must be of the form 16k+1 where k
iz a pozitive integer. Intermediate accumulations have 32 bits (b31:b0)
and uze wrap-around arithmetic. All input and output signals are signed
1E-bit fixed-point data types.

r— Parameters
Coefficient source: ISpeCif}' via dialog j

Coefficients:
|u. 051:17)

Set fractional bits in coefficients to: I Best precizion j

IHumber of fractional Bits in cosfhicients:
Jio

Set fractional bits in autpLt to: | atch high 16 bits of product (b30:b > |

Hurmber of fractional Bits in cutput:
Jio

Initial conditions:
jo

Cancel Help Lpply

7-91

C62x Symmetric Real FIR

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog

® Input port — Accept the coefficients from port H

Coefficients
Enter the coefficients in vector format. This parameter is visible
only when Specify via dialog is specified for the Coefficient
source parameter. This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

® Match input X — Sets the coefficients to have the same
number of fractional bits as the input

® Best precision — Sets the number of fractional bits of the
coefficients such that the coefficients are represented to the
best precision possible

e User-defined — Sets the number of fractional bits in
the coefficients with the Number of fractional bits in
coefficients parameter

This parameter is visible only when Specify via dialogis
specified for the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the
filter coefficients. This parameter is visible only when Specify
via dialog is specified for the Coefficient source parameter,
and is only enabled if User-defined is specified for the Set
fractional bits in coefficients to parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Select which 16 bits to output:

7-92

C62x Symmetric Real FIR

e Match input X — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input X

e Match coefficients H — Output the 16 bits of the
accumulator value that cause the number of fractional bits in

the output to match the number of fractional bits in coefficients
H

e Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value

e Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value

e User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter

See Matrix Multiply “Examples” on page 7-73 for demonstrations
of these selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is only enabled if User-defined is
selected for the Set fractional bits in output to parameter.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less

7-93

C62x Symmetric Real FIR

7-94

Algorithm

See Also

than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_fir_ sym.
During code generation, this block calls the DSP_fir_sym routine to
produce optimized code.

C62xComplex FIR, C62xGeneral Real FIR, C62xRadix-4 Real FIR,
C62xRadix-8 Real FIR

C62x Vector Dot Product

Purpose

Library

Description

" II CEZx
W |

v LAOTFRALD

Wector Dot Product

Dialog
Box

Algorithm

Vector dot product of real input signals

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Dot Product block computes the vector dot product of two
real input vectors, X and Y. The input vectors must have the same
dimensions and must be signed 16-bit fixed-point data types. The
number of samples per channel of the inputs must be even and greater
than or equal to four. The output is a signed 32-bit fixed-point scalar on
each channel, and the number of fractional bits of the output is equal to
the sum of the number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Yector Dot Product]

Vector Dot Product [mazk] (link]

Compute the vector dot product of real inputs # and . [nputs must have
the same dimetisions, and the number of samples per channel must be
even and greater than or equal to faur. Inputs must alzo be signed 16-bit
fixed-point data types. The output iz a signed 32-bit fised-point scalar on
each channel.

Cancel | Help | Apply |

In simulation, the Vector Dot Product block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_dotprod.
During code generation, this block calls the DSP_dotprod routine to
produce optimized code.

7-95

C62x Vector Maximum Index

7-96

Purpose
Library

Description

TI CG2x

E i
Tl Ao Do,
Wector Maximum Index

Dialog
Box

Algorithm

Zero-based index of maximum value element in each input signal
channel

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Maximum Index block computes the zero-based index of the
maximum value element in each channel (vector) of the input signal.
The input may be any real, 16-bit, signed fixed-point data type, and the
number of samples per input channel must be an integer multiple of
three. The output data type is a 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Yector Maximum Index B

Wector Masimunm Indes [mask] [link)

Campute the zera-based index of the marimum value element in each
input channel [vector]. The number of input samples per channel must be
a multiple: of three. The input may be any real signed 16-bit fixed-point data
twpe. The output data type iz a signed 32-bit integer.

Cancel | Help | Lpply |

In simulation, the Vector Maximum Index block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxidx. During
code generation, this block calls the DSP_maxidx routine to produce
optimized code.

C62x Vector Maximum Value

Purpose

Library

Description

TI CE2x

E i
[LEEAVLTR

Wector Maximum Walue

Dialog
Box

Algorithm

See Also

Maximum value for each input signal channel

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Maximum Value block returns the maximum value in each
channel (vector) of the input signal. The input can be any real, 16-bit,
signed fixed-point data type. The number of samples on each input
channel must be an integer multiple of four and must be at least 16.
The output data type matches the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: ¥Yector Maximum Yalue B

Wector Masimunm Yalue [mask] (link]

Campute the maxinmum value for each channel [vector] of the input signal.
The number of samples per channel must be greater than or equal to
zisteen, and an integer multiple of four. The input and output data type
must match, and may be any real zsigned 1E-bit fired-point data type.

Cancel | Help | Lpply |

In simulation, the Vector Maximum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_maxval. During
code generation, this block calls the DSP_maxval routine to produce
optimized code.

C62xVector Minimum Value

7-97

C62x Vector Minimum Value

Purpose

Library

Description

Tl CEZx

E i
MW AL

Wector Minimum Walue

Dialog
Box

Algorithm

See Also

7-98

Minimum value for each input signal channel

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Minimum Value block returns the minimum value in each
channel of the input signal. The input may be any real, 16-bit, signed
fixed-point data type. The number of samples on each input channel
must be an integer multiple of four and must be at least 16. The output
data type matches the input data type.

The Vector Minimum Value block supports both continuous and discrete

sample times. This block supports little-endian code generation only.

Block Parameters: ¥ector Minimum ¥alue B

Wector Minimum Y alue [mazk] [link)

Carpute the minirmnunn walue far each channel [vectar] of the input zsignal.
The number of samples per channel must be greater than or equal to
zisteen, and an integer multiple of four. The input and output data type
must match, and may be any real zsigned 1E-bit fired-point data type.

Cancel | Help | Lpply |

In simulation, the Vector Minimum Value block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_minval. During
code generation, this block calls the DSP_minval routine to produce
optimized code.

C62xVector Maximum Value

C62x Vector Multiply

Purpose

Library

Description

3 ‘II Cx
A

ULz

Wector Multiphy

Dialog
Box

Algorithm

See Also

Element-wise multiplication on inputs

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Multiply block performs element-wise 32-bit multiplication
of two inputs X and Y. The total number of elements in each input
must be even and at least eight, and the inputs must have matching
dimensions. The upper 32 bits of the 64-bit accumulator result are
returned. All input and output elements are 32-bit signed fixed-point
data types.

The Vector Multiply block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Block Parameters: ¥ector Multiply B

Vector Multiply [mazk] [link]

Perform element-wize 32-bit multiplication on real inputs # and . The
upper 32 bitz of the G4-bit result are returned. The inputs must have
matching dimenzions. The total number of elements in each input must be
even and at least eight. All input and output elements are signed 32-bit
fixed-point data types,

Cancel | Help | Apply |

In simulation, the Vector Multiply block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_mul32. During
code generation, this block calls the DSP_mul32 routine to produce
optimized code.

C62xMatrix Multiply

7-99

C62x Vector Negate

Purpose

Library

Description

TI CE2x

E i
NE &322
Wector Megate

Dialog
Box

Algorithm

7-100

Negate each input signal element

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements
must be even and at least four. For complex signals, the number of
input elements must be at least two. The output is the same data type
as the input.

The Vector Negate block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Block Parameters: Yector Negate]

Vector Megate [mazk] [link]

Megate each element of a signed 32-bit fised-point input signal. For real
sighals, the number of input elements must be even and at least four. For
complex signals, the number of input elements must be at least bwo.

Cancel | Help | Apply |

In simulation, the Vector Negate block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_neg32. During
code generation, this block calls the DSP_neg32 routine to produce
optimized code.

C62x Vector Sum of Squares

Purpose

Library

Description

Tl CEZx

E i
WECSUMSR
Wector Sum of Squares

Dialog
Box

Algorithm

Sum of squares over each real input channel

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Vector Sum of Squares block computes the sum of squares over
each channel of a real input. The number of samples per input channel
must be even and at least eight, and the input must be a 16-bit signed
fixed-point data type. The output is a 32-bit signed fixed-point scalar on
each channel. The number of fractional bits of the output is twice the
number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: ¥Yector Sum of Squares B

Wector Sum of Squares [mazk] (link)

Campute the sum of squares over each channel of a real input. The
number of zamples per channel must be even and at least eight. The input
muzt be a signed 16-bit fised-point data type. The output iz a signed 32-bit
fixed-point scalar on each channel.

Cancel | Help | Lpply |

In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_vecsumsq.
During code generation, this block calls the DSP_vecsumsq routine to
produce optimized code.

7-101

C62x Weighted Vector Sum

Purpose

Library

Description

" II CHZx

W |
v n_WEC
Weighted Wector Sum

Dialog
Box

7-102

Weighted sum of input vectors

“C62x DSP Library (tic62dsplib)” on page 6-9, “Math and Matrices”
on page 6-10

The Weighted Vector Sum block computes the weighted sum of two
inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or
frame-based matrices. The number of samples per channel must be a
multiple of four. Inputs, weights, and output are Q.15 data types, and
weights must be in the range -1 <W < 1.

The Weighted Vector Sum block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Weighted Yector Sum]

—Weighted Yector Sum [maszk] [link]

Find the weighted zum = + %" of twa input wectars. The number of

zamples per channel must be a multiple of four. The weights, ', may be
zupplied either thraugh ah input part or by entering directly into the mask
dialog. Input signals, weights, and output signale are all .15 data types.

r— Parameters
*feight source: ISpecify via dialog j
Wwieights (]

Jos

Cancel | Help | Apply |

Weight source

Specify the source of the weights:

® Specify via dialog — Enter the weights in the Weights (W)
parameter in the dialog

® Input port — Accept the weights from port W

C62x Weighted Vector Sum
|

Weights (W)
This parameter is visible only when Specify via dialogis
specified for the Weight source parameter. This parameter is
tunable in simulation. When the weights are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length of this vector must be a multiple of four.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a
multiple of four, and the number of columns of this matrix
must be equal to the number of channels.

Weights must be in the range -1 <W < 1.

Algorithm In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C62x DSP Library assembly code function DSP_w_vec. During
code generation, this block calls the DSP_w_vec routine to produce
optimized code.

7-103

C6416 DSK ADC

Purpose
Library

Description

Line In
Co416 DSK o
ALC

ADC

7-104

Digitized output from codec to processor
“C6416 DSK (c6416dsklib)” on page 6-3

Use the C6416 DSK ADC (analog-to-digital converter) block to capture
and digitize analog signals from the analog input jacks on the board.
Placing an C6416 DSK ADC block in your Simulink block diagram lets
you use the AIC23 coder-decoder module (codec) on the C6416 DSK to
convert an analog input signal to a digital signal for the digital signal
processor.

Most of the configuration options in the block affect the codec. However,
the Output data type, Samples per frame, and Scaling options
relate to the model you are using in Simulink software, the signal
processor on the board, or direct memory access (DMA) on the board.
In the following table, you find each option listed with the C6416 DSK
hardware affected.

Option Affected Hardware

ADC Source Codec

Mic Codec

Output data type | TMS320C6416 digital signal processor
Samples per Direct memory access module

frame

Sample Rate Codec

Scaling TMS320C6416 digital signal processor
Word Length Codec

You can select one of two input sources from the ADC source list:

® Line In — the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

C6416 DSK ADC

® Mic — the codec accepts input from the microphone connector (MIC
IN) on the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input
data into frames at the specified samples per frame rate. In Simulink
software, the block puts monaural data into an N-element column
vector. Stereo data input forms an N-by-2 matrix with N data values
and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of
data is either the N-element vector (monaural input) or N-by-2 matrix
(stereo input). For monaural input, the elements in each frame form the
column vector of input audio data. In the stereo format, the frame is
the matrix of audio data represented by the matrix rows and columns
— the rows are the audio data samples and the columns are the left
and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic
gain boost check box to add 20 dB to the microphone input signal
before the codec digitizes the signal.

7-105

C6416 DSK ADC

Dialog
Box

7-106

] source Block Parameters: ADC X|

—CG6416DSK ADC (mask)

Configures the AIC23 codec and the TMS320C6416 peripherals to output 3
stream of data collected from the analog jacks on the C6416 DSP Starter Kit
board.

During simulation, this block simply outputs zeros.

—Parameters
ADC source:l Line In j
[~ +20 dB Mic gain boost
Sampling rate: IBkHz j
Word length: | 16-bit =l
CQutput data type:l Integer j
Scaling:l MNormalize j

Samples perframe:
[64

[Inherit sample time

oK I Cancel Help

ADC source
The input source to the codec. Line In is the default. Selecting
Mic enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
1s applied before analog-to-digital conversion.

Stereo
Indicates whether the input audio data is in monaural or stereo
format. Select the check box to enable stereo input. Clear the
check box when you input monaural data. By default, stereo is
enabled. Monaural data comes from the right channel.

Sample rate
Sets the sample rate for the data output by the codec. Options are
8, 32, 44.1, 48, and 96 kHz, with a default of 8 kHz.

C6416 DSK ADC

Word length
Sets the resolution with which the ADC samples the analog input.
Increasing the word length increases the accuracy of the data in

each sample. If your model also contains a DAC block, set its
word length match that of the ADC block.

Output data type
Selects the word length and shape of the data from the codec.
By default, double is selected. Options are Double, Single, and
Integer. To process single and double data types, the block uses
emulated floating-point instructions on the C6416 processor.

Scaling
Selects whether the codec data is unmodified, or normalized to
the output range to £1.0, based on the codec data format. Select
either Normalize or Integer from the list. Normalize is the
default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal the block
buffers internally before it sends the digitized signals, as a frame
vector, to the next block in the model. This value defaults to 64
samples per frame. Notice that the frame rate depends on the
sample rate and frame size. For example, if your input is 8000
samples per second, and you select 32 samples per frame, the
frame rate 1s 250 frames per second. The throughput remains the
same at 8000 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also C6416 DSK DAC

7-107

C6416 DSK DAC

Purpose

Library

Description

7-108

CH416 DSK
DAC

DAC

Use codec to convert digital input to analog output
“C6416 DSK (c6416dsklib)” on page 6-3

Adding the C6416 DSK DAC (digital-to-analog converter) block to your
Simulink model lets you output an analog signal to the LINE OUT
connection on the C6416 DSK board. When you add the C6416 DSK
DAC block, the digital signal received by the codec is converted to an
analog signal and sent to the output jack.

Only the Word length option in the block affects the codec. The other
options relate to the model you are using in Simulink software and
the signal processor on the board. Refer to the following table for
information.

Option Affected Hardware

Overflow mode TMS320C6416 Digital Signal Processor
Scaling TMS320C6416 Digital Signal Processor
Word length Codec

C6416 DSK DAC

Dialog

Box

E! Sink Block Parameters: DAC il

—C6416DSK DAC (mask)

Configures the AIC23 codec and the TMS320C6416 penpherals to
send a stream of data to the output jack on the C6416 DSP Starter Kit
board.

—Parameters

Word length: M

Sampling rate:IBI-cHz

Scaling:l Mormalize

ENJERNEN

Overflow mode: I Wrap

DK I Cancel | Help | Apply |

Word length
Sets the DAC to interpret the input data word length. Without
this setting, the DAC cannot convert the digital data to analog
correctly. The value defaults to 16 bits, with options of 20, 24, and
32 bits. The word length you set here should always match the
ADC setting.

Sampling rate
Sets the sampling rate for the block output to the output ports on
the target. Select from the list of available rates.

Scaling
Selects whether the input to the codec represents unmodified data,
or data that has been normalized to the range +£1.0. Matching the
setting for the C6416 DSK ADC block is usually appropriate here.

Overflow mode
Determines how the codec responds to data that is outside the
range specified by the Scaling parameter. You can choose Wrap
or Saturate to handle the result of an overflow in an operation. If
efficient operation matters, Wrap is the more efficient mode.

7-109

C6416 DSK DAC

See Also C6416 DSK ADC

7-110

C6416 DSK DIP Switch

Purpose
Library

Description

CH416 DSK
DIF Switch

Switch

Simulate or read DIP switches
“C6416 DSK (c6416dsklib)” on page 6-3

Added to your model, this block behaves differently in simulation than
in code generation and targeting.

In Simulation — the options Switch 0, Switch 1, Switch 2, and
Switch 3 generate output to simulate the settings of the user-defined
dual inline pin (DIP) switches on your C6416 DSK. Each option turns
the associated DIP switch on when you select it. The switches are
independent of one another.

By defining the switches to represent actions on your target, DIP
switches let you modify the operation of your process by reconfiguring
the switch settings.

Use the Data type to specify whether the DIP switch options output an
integer or a logical string of bits to represent the status of the switches.
The table that follows presents all the option setting combinations with
the result of your Data type selection.

Option Settings to Simulate the User DIP Switches on the
C6416 DSK

Switch 0 Switch 3 | Boolean | Integer
(LSB) Switch 1 | Switch 2 | (MSB) Output | Output
Cleared Cleared Cleared Cleared 0000 0

Selected | Cleared Cleared Cleared 0001
Cleared Selected | Cleared Cleared 0010
Selected | Selected | Cleared Cleared 0011
Cleared Cleared Selected | Cleared 0100
Selected | Cleared Selected | Cleared 0101
Cleared Selected | Selected | Cleared 0110

| O | WD

7-111

C6416 DSK DIP Switch

7-112

Option Settings to Simulate the User DIP Switches on the C6416
DSK (Continued)

Switch 0 Switch 3 | Boolean | Integer
(LSB) Switch 1 | Switch 2 | (MSB) Output | Output
Selected | Selected | Selected | Cleared 0111 7
Cleared Cleared Cleared Selected | 1000 8
Selected | Cleared Cleared Selected | 1001 9
Cleared Selected | Cleared Selected | 1010 10
Selected | Selected | Cleared Selected | 1011 11
Cleared Cleared Selected | Selected | 1100 12
Selected | Cleared Selected | Selected | 1101 13
Cleared Selected | Selected | Selected | 1110 14
Selected | Selected | Selected | Selected | 1111 15

Selecting the Integer data type results in the switch settings
generating integers in the range from 0 to 15 (uint8), corresponding to
converting the string of individual switch settings to a decimal value. In
the Boolean data type, the output string presents the separate switch
setting for each switch, with the Switch 0 status represented by the
least significant bit (LSB) and the status of Switch 3 represented by
the most significant bit (MSB).

In Code generation and targeting — the code generated by the block
reads the physical switch settings of the user switches on the board and
reports them as shown in the table above. Your process uses the result
in the same way whether in simulation or in code generation. In code
generation and when running your application, the block code ignores
the settings for Switch 0, Switch 1, Switch 2 and Switch 3 in favor
of reading the hardware switch settings. When the block reads the DIP
switches, it reports the results as either a Boolean string or an integer
value as the following table shows.

C6416 DSK DIP Switch

Output Values From The User DIP Switches on the C6416 DSK

Switch 0 Switch 3 | Boolean | Integer
(LSB) Switch 1 | Switch 2 | (MSB) Output | Output
Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

Off On On On 1110 14

On On On On 1111 15

7-113

C6416 DSK DIP Switch

Dialog
Box

7-114

Block Parameters: Switch x|
— CB416 DSKE DIP Switch [mask)

Outputs state of uzer switches located on CE416 DEK board. In Boolean
mode, outputs & vector of 4 boolean values, with the least-significant bit

[LSB] firzt. In Integer mode, outputs aninteger from O to 7. Faor simulation,
checkbores in the block dialog are uzed in place of the physical zwitches,

T
[Switch 1
[~ Switch 2

[~ Switch 3 [MSE]

Data type: IBDD|BEII"I j

Sample time:;

|1.c|

0k, I Cancel Help |

Opening this dialog causes a running simulation to pause. Refer to
“Changing Source Block Parameters During Simulation” in your online
Simulink documentation for details.

Switch 0
Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

C6416 DSK DIP Switch

Data type
Determines how the block reports the status of the user-defined
DIP switches. Boolean is the default, indicating that the output is
a vector of four logical values.

Each vector element represents the status of one DIP switch;

the first is Switch 0 and the fourth is Switch 3. The data type
Integer converts the logical string to an equivalent unsigned 8-bit
(uint8) value. For example, when the logical string generated

by the switches is 0101, the conversion yields 5 — the MSB is 0
and the LSB is 1.

Sample time
Specifies the time between samples of the signal. This value
defaults to 1 second between samples, for a sample rate of one
sample per second (1/Sample time).

7-115

C6416 DSK LED

Purpose

Library

Description

CE416 DSK
LED

LED

Dialog
Box

7-116

Control LEDs
“C6416 DSK (c6416dsklib)” on page 6-3

Adding the C6416 DSK LED block to your Simulink block diagram lets
you trigger the user light emitting diodes (LED) on the C6416 DSK. To
use the block, send a nonzero real scalar to the block. The C6416 DSK
LED block controls all four User LEDs located on the C6416 DSK.

When you add this block to a model, and send an integer to the block
input, the block sets the LED state based on the input value it receives:

¢ When the block receives an input value equal to 0, the specified LEDs
are turned off (disabled), 0000

® When the block receives a nonzero input value, the specified LEDs
are turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors
do not work to activate LEDs; nor do complex numbers as scalars or
vectors.

For example, sending the value 6 turns on the diodes to show 0110
(off/on/on/off). 13 turns on the diodes to show 1101.

All LEDs maintain their state until the C6416 DSK LED block receives
an input value that changes the state. Enabled LEDs stay on until
the block receives an input value that turns the LEDs off; disabled
LEDs stay off until turned on. Resetting the C6416 DSK turns off all
User LEDs. When you start an application, the LEDs are turned off
by default.

x|
CE41EDSK LED [maszk)
Controlz the User LEDs on the CE416DSK. duning execution of generated

code. The input muzt be an integer between 0 and 15, and the binary
equivalent of that value will be reflected on the four user LED =,

EE Cancel Help Apply

C6416 DSK LED

This dialog does not have any user-selectable options.

7-117

C6416 DSK Reset

Purpose Reset to initial conditions
Library “C6416 DSK (c6416dsklib)” on page 6-3
Description Double-clicking this block in a Simulink model window resets the
C6416 DSK that is running the executable code built from the model.
Resat When you double-click the C6416 DSK Reset block, the block runs the
Lkl B, software reset function provided by CCS IDE that resets the processor
Resat on your C6416 DSK. Applications running on the board stop and the

signal processor returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to any block
in the model. When you double-click this block in the block library, it
resets your C6416 DSK. In other words, any time you double-click a
C6416 DSK Reset block, you reset your C6416 DSK.

Dialog This block does not have settable options and does not provide a user
Box interface dialog.

7-118

C6455 DSK ADC

Purpose

Library

Description

Dialog
Box

Configure AIC23 audio codec to capture audio stream from LINE-IN
or MIC

“C6455 EVM (c6455evmlib)” on page 6-4

This block uses the AIC23 audio codec on the C6455 DSK board to
capture an analog audio stream from the Line In or Mic jacks and
generate a digital frame-based output. Output is a [Nx2] array of int16
values representing the left and right channels of the sampled signal,
where N is the number of samples per frame. Use the Inherit sample
time parameter to place the ADC block in an asynchronous function
call subsystem.

E! Source Block Parameters: ADC x |

—ADC (mask) (link]

Configures the AICZ3 audio codec on the CE45505K board to capture and audio
strean Frarm the Line In or Mic In jacks of the C&455D5K board, Qutput is a [hx2], M
being the number of samples per frame, array of int16 walues representing the left
and right channels of the sampled signal, Use Inherit sample time parameter to
place the ADC black in an asyncronous Funckion call subsyskem.

—Farameters
T -
Sampling rate: |8 kHz ;I

Samples per frame:

=

[Inherit sample time

(04 Cancel Help

ADC input source
Select Line In or Mic In as the input source.

7-119

C6455 DSK ADC

Sampling Rate
Set the sampling rate of the analog-to-digital converter.
Increasing the frequency increases the accuracy of the sampling
data over time.

Samples per frame
Set the number of samples the block buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. For
example, if Sampling Rate is 8 kHz, and Samples per frame is
32, the frame rate is 250 frames per second (8000/32 = 250).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also DM6437 EVM DAC

7-120

C6455 DSK DAC

Purpose Configure AIC23 codec to convert digital signal to audio output on
LINE OUT and HP OUT

Library “C6455 EVM (c6455evmlib)” on page 6-4

Description Configure the AIC23 stereo codec on the C6455 EVM board to convert

a digital signal to an analog audio stream on the LINE OUT and HP
OUT output jacks. The digital signal input must be an [Nx2] array of
int16 values. Column 1 of the array is the left channel and column 2 is
the right channel of the sampled signal. The sampling rate of the DAC
output must match the sampling rate of the digital signal from the ADC.

Dialog x|

Box —DAC (mask) (link)

CE45E5D5K

DAC

DAC

Configures the AIC23 audio codec on the C545505K board to output and audio
stream.Input must be a [Mx2] array of int16 values representing the left and right
channels of the sampled signal. Sampling rate of the DAC must match the sampling

rate of the ADC block.
—Parameters
Sampling frequency: =

oK Cancel | Help | Apply |

Sampling Frequency
Set the sampling rate of the digital-to-analog converter. The rate
defaults to 8 kHz. Options range up to 96 kHz.

See Also (6455 DSK ADC

7-121

C6455 DSK DIP

Purpose
Library

Description

CE4SE0SH

CIF
DIF

7-122

Output state of user-selected DIP switch as Boolean
“C6455 EVM (c6455evmlib)” on page 6-4

Outputs a Boolean that gives the state of a user-selected DIP switch
from the SW1 bank of switches on the C6455 DSK/EVM board. Boolean
0 means the switch is open, and Boolean 1 means it is closed. Use
multiple blocks to output the state of multiple DIP switches.

For simulations, you may want to use the C6455 DSK DIP block with
a Constant block and an Environment Controller block, both from the
Simulink block libraries.

Constant

.En—

Ot f
aTw

Environment

Controller

C6455 DSK DIP
|

Dialog x

Box —DIP {mask) {ink}

Qutputs state of one of the selected user switches on
C&455DSKEVM board. The output value is boolean, thatis '0" or
'1", depending on the state of the switch.

—Parameters

DIP Switch: [Z{RE(] b

Sample time:

1

oK Cancel Help

DIP Switch
Select the switch, 0 through 3, from the SW1 bank of switches.

Sample Time
Specifies the time between samples of the signal in seconds. This
value defaults to 1 second between samples.

7-123

C6455 DSK LED

Purpose
Library

Description

CEASED 5K

LED

LEL

Dialog
Box

7-124

Apply Boolean input to user-selected LED
“C6455 EVM (c6455evmlib)” on page 6-4

This block controls an individual LED among the User LEDs on the
C6455 DSK during execution of generated code. The block input accepts

Boolean values, 0 (off) or 1 (on). Use multiple blocks to control multiple
LEDs.

x

—LED (mask) (ink)

Controls the User LEDs on the C&45505K during execution of generated code. The
input must be a boolean value, that is either '0" or "1, and that value will be
reflected on one of the four user LEDs selected.

—Parameters
LED rumber: 3 ——
oK Cancel Help Apply
LED number

Specify the number of the User LED that the Boolean input
controls.

C6455 DSK SRIO Config

Purpose
Library

Description

CE455

JRIC Comnfig

SRID Config

Configure generated code for serial Rapidl/O peripheral
“C6455 EVM (c6455evmlib)” on page 6-4

The C6455 processor supports the serial Rapidl/O (SRIO) peripheral
from Texas Instruments for high-speed packet-switched chip-to-chip
and board-to-board communications. This block provides the
parameters you use to configure the SRIO peripheral on your hardware
to communicate between different processors.

The dialog box parameters that you set provide values to initialize the
registers on the processor relevant to SRIO processing.

Because SRIO handles communications between two platforms, it
requires two models or sets of code—one running on the local device and
one running on the remote device. Both models must include the SRIO
Config block to configure their SRIO communications capability, and
the blocks must have the correct device IDs to refer to one another.

SRIO blocks implement both direct I/O and doorbell interrupt forms
of SRIO communications. Direct I/O provides data transfer directly
between two processors. With direct I/O you have burst-write and
burst-read access with the remote device. The block configures the
SRIO peripheral as a 4x SRIO, meaning that all four links of SRIO are
bundled together for the fastest link. Direct I/O uses the Load/Store
Unit (LSU) and Direct Memory Access (DMA) Engine to control and
monitor the data transfer.

Doorbell interrupt enables the local device to initiate CPU interrupts
on the remote device if burst-write access is enabled. Such interrupts
signal that data is ready to transfer. Both devices, local (source) and
remote (destination) include doorbell message queues. The destination
device reads its queue to determine the interrupt source and to process
the doorbell INFO field.

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) demo, located in the online
help system demos for Target Support Package software.

7-125

C6455 DSK SRIO Config

7-126

Dialog
Box

L] Block Parameters: SRIO Config x|

—CE455 SRIO Config (mask)

Setthe configuration parameters for the SRIO peripheral, which will
be used inintializing the SRIC-related HW registers.

—Farameters

Local device ID {16-bit hex):

OxCAFE
Dperation rate:l Full j
Interrupt number far SRIO events:l 4 j

Ok | Cancel | Help | Apply |

Local device ID (16-bit hex)
Enter the ID of the local device to configure the device ID field in
the generated code. Use a 16-bit hexadecimal format. When you
configure SRIO Transmit and SRIO Receive blocks in models, the
local device ID in this field must match the remote device ID for
the Transmit and Receive block in each model.

In the generated code, you see the input device ID as a constant
mapped to the following program code entry.

#define SRIO_LARGE_DEV_ID OXCAFE

Operation rate
Set the operating frequency of the SRIO serializer/deserializer
(SERDES). Two variables determine the primary operating
frequency of the SERDES, the reference clock frequency and PLL
multiplication factor. Select Full, Half, or Quarter from the list.

® Full takes two data samples for each PLL output clock cycle.
® Half takes one data sample for each PLL output clock cycle.

C6455 DSK SRIO Config
|

® Quarter takes one data sample and a delay for two PLL output
cycles
This value defaults to Full.

Interrupt number for SRIO events
Assigns an interrupt number to initiate for SRIO events. After
you select a value from the list, you see a constant similar to the
following defined in the generated code

#define SRIO_INTR_NUMBER 4

References For more information about SRIO, refer to TMS320TCI1648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

7-127

C6455 DSK SRIO Receive

Purpose

Library

Description

7-128

SRI0 Receive -

SRI0O Receive

Configure generated code to receive serial Rapidl/O packets
“C6455 EVM (c6455evmlib)” on page 6-4

SRIO receive blocks add the ability to receive SRIO packets to the
processor that is running the embedded code. Each receive block has
two output ports—theStat port that is permanent and the optional Ptr
port, that report the status of the block and output a pointer to data.

Writing data between DSPs is more efficient than writing because
SRIO write can handle up to 4kB per write request without stalling
the processor while SRIO read only handles up to 256 bytes per read
request. Thus, the time needed to transfer data by reading from the
remote device can be much longer than that required for writing from
the remote device. Use the doorbell interrupt options to signal remote
devices and to coordinate the data transfer between processors.

The Stat port reports SRIO operating status as shown in the following
table.

Value at Stat Description

Port

1 SRIO request is done (success)

0 SRIO request is pending

-1 SRIO request failed

-2 SRIO request was not sent because the SRIO

request queue is full

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) demo in the online help
system demos for Target Support Package software.

C6455 DSK SRIO Receive

Dialog The block dialog box provides parameters on two panes:
Box
® Main pane includes parameters that configure the data transfer
operation, the doorbell interrupt ID, and various address settings
for the remote device and host.

® “Data Types Pane” on page 7-42parameters configure the data type
and size that the block reads.

7-129

C6455 DSK SRIO Receive

7-130

Main Pane

E] Source Block Parameters: SRIO il

CB4556 SRI0 Receive [mask)

Canfigure the SRIO peripheral to accept doorbell
interrupt and/or read data from remote dewvice.

fidain IDataPererties |

Remaote device 10 (16-kit hex):
[oxCAFE

v :Accept doorbell interrupt from remote device:

Doarkell interruptID:I 1] j

[v Read from remote device
Remote address (32-hit hex aligned to an B-byte boundan:
|ox00300000

[v Show output portfor lozal address poitter
Local address (32-bit hex aligned to an B-byte boundan:
|ox00300500

[v Enable blocking mode

Sample time:
fo.01

Tirmeout value:
fint

(8] I Cancel | Help

Remote device ID (16-bit hex)

Enter the ID of the remote device in 16-bit hexadecimal format
to configure the remote ID field in the generated code. When you
configure SRIO Receive blocks for this communication link, the
remote device ID in this field must match the local device ID for
the SRIO Config block in the transmitting model.

C6455 DSK SRIO Receive

Accept doorbell interrupt from remote device
Enables the doorbell interrupt operation for the block. The
block always waits until it receives a doorbell interrupt before it
reads from the remote device. Selecting this option enables the
Doorbell interrupt ID parameter so you can set the interrupt
ID.

Doorbell interrupt ID
Sets the interrupt ID for the doorbell to determine which SRIO
Receive block should be awakened based on the incoming
interrupt value. Select a value from the list. If your model
contains more than one SRIO receive block, each receive block
must use a different ID. IDs range from 0 to 15 with a default
value of 0. SRIO Receive and SRIO Transmit blocks are paired
together by this ID. Create and SRIO Transmit block with this ID
to send the doorbell interrupt.

Read from remote device
Selecting this option tells the block to perform a burst read from
the remote device at the address in Remote address. If you clear
this option, you must select Accept doorbell interrupt from
remote device.

Remote address (32-bit hex aligned to an 8-byte boundary
This address specifies where the data is being read from the
remote device. The address you enter here should match the local
address of the corresponding SRIO Transmit block.

This address should align to an 8-byte boundary in memory.

Show output port for local address pointer
When you select this parameter, the output port Ptr returns the
pointer that you specify in Local address (32-bit hex aligned
to an 8 byte boundary). Clearing this option removes the Ptr
port from the block.

Local address (32-bit hex aligned to an 8 byte boundary
This address specifies the destination for the data to transfer. This
address should match the remote address of the corresponding

7-131

C6455 DSK SRIO Receive

SRIO Transmit block. You will need it if the SRIO Transmit block
performs burst-write operations.

Enable blocking mode
SRIO receive blocks can operate in either blocking or nonblocking
modes.

e Selecting this option puts the block in blocking mode and
the block waits for a doorbell interrupt to come or timeout to
occur before passing program control to downstream blocks or
performing any read operations.

— Clearing Enable blocking mode directs the block to poll
the doorbell interrupt status register to determine whether
the SRIO Transmit block sent a doorbell packet.

— Sending the packet indicates that the transmitting block
completed a data transfer to this block.

¢ (learing this option to put the block in nonblocking mode
enables the Sample time option. In nonblocking mode,
Simulink software uses the sample time to determine the
polling period the block uses for polling the interrupt status
register.

Enable blocking mode is not available when you clear Enable
doorbell. Clearing Accept doorbell interrupt form remote
device also disables this option because blocking mode refers to
the doorbell interrupt process.

Sample time
Determines the polling period, in seconds, for the block in
nonblocking mode. Enter the time period to wait between polls.
To enable this option, clear Enable blocking mode and select
Accept doorbell interrupt from remote device.

Timeout value
In blocking mode, this value determines how long the block
waits for a doorbell interrupt before it sets the Stat output port
to Timeout status. Enter a time in seconds (The value defaults

7-132

C6455 DSK SRIO Receive

to inf to block until the block receives a doorbell interrupt).
The default time-out value is 1 second. Clearing either Enable
blocking mode or Accept doorbell interrupt from remote
device disables this option.

Data Properties Pane

E] Source Block Parameters: SRIO il

CB4556 SRI0 Receive [mask)

Canfigure the SRIO peripheral to accept doorbell
interrupt and/or read data from remote dewvice.

Main | Data Properties] |
Cutput data size:
[258

Outputdatatype:l int32 j
™ Frame-hased

OK I Cancel Help

7-133

C6455 DSK SRIO Receive

References

7-134

Output data size
Use this to specify the amount of data in bytes to transfer. Enter
either a scalar to define a vector of elements or a two-element
array. For example, enter 256 to specify a vector of 256 elements.
To specify a two-dimensional array of 512 elements, enter [256 2].
The block uses this value to determine the size of the Ptr port. If
you select the Frame-based option, you must enter the vector, or
scalar value, as an array. Thus the 256-element vector example
entry becomes [256 1].

Output data type
Specify the data type used for the output. With this information,
the block calculates the size of the data transfer in bytes using
this value and the Output data size value.

Frame-based
When you select this option, the block treats the data
as frame-based rather than sample-based. If you select
Frame-based, you must enter your output data size as a
two-element array. For example, to specify a vector that contains
256 elements, enter [256 1].

For more information about SRIO, refer to TMS320TCI1648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

C6455 DSK SRIO Transmit

Purpose
Library

Description

SRIO Tran=mit

SRI0 Tran=smits

Configure generated code to transmit serial Rapidl/O packets
“C6455 EVM (c6455evmlib)” on page 6-4

SRIO transmit blocks add the ability to transmit SRIO packets to
another processor. Each transmit block has an input Ptr port, and an
optional Stat output port controlled by the Show output port for
status option.

Writing data between DSPs is more efficient than reading because
SRIO write can handle up to 4kB per write request without stalling
the processor while SRIO read only handles up to 256 bytes per read
request. Thus, the time needed to transfer data by reading from the
remote device can be much longer than that required for writing from
the remote device. SRIO read may require multiple requests. Use the
doorbell interrupt options signal remote devices and to coordinate the
data transfer between the processors.

The Stat port reports SRIO operating status as shown in the following
table.

Value at Stat Description

Port

1 SRIO request is done (success)

0 SRIO request is pending

-1 SRIO request failed

-2 SRIO request was not sent because the SRIO

request queue is full

To see the SRIO blocks in use, refer to the Interprocessor
Communications via Serial Rapid I/O (SRIO) demo in the online help
system demos for Target Support Package software.

7-135

C6455 DSK SRIO Transmit

Dlalog 5] sink Block Parameters: SRTO Transmit il

Box —Ch455 SRIO Transmit (mask)

Caonfigure the SRI0 peripheral to send doorbell interrupt and/or write
data to remote dewvice.

—Farameters
Femate device 1D {16-hit hex):

|xCAFE

v Send doorbell interrupt to remote device

Doorbell interruptID:ID j
v “Write to remote device

Remaote address (32-bit hex aligned to an G-lyte boundan:

| 00900100

[Specify local address for incoming signal buffer

Local address (32-hit hex aligned to an 8-byte boundan:

| 00300000

[Show output port for status

[8]:4 | Cancel | Help Apphy

Remote device ID (16-bit hex)
Enter the ID of the remote device in 16-bit hexadecimal format
to configure the remote ID field in the generated code. When you
configure SRIO Transmit blocks for this communication link, the
remote device ID in this field must match the local device ID for
the SRIO Config block on the receiving end of the transmission.

Send doorbell interrupt to remote device
Enables the doorbell interrupt operation for the bloc, which sends
a doorbell interrupt after writing data to the remote device.
Selecting this option enables Doorbell interrupt ID.

7-136

C6455 DSK SRIO Transmit

Doorbell interrupt ID
Sets the interrupt ID for the doorbell to set the doorbell INFO field
of the SRIO packet. Select a value from the list. If your model
contains more than one SRIO transmit block, each transmit block
must use a different ID. IDs range from 0 to 15 with a default
value of 0. SRIO Receive and SRIO Transmit blocks are paired
together by this ID. Create an SRIO Receive block with this ID
to receive the doorbell interrupt. The block uses this value to set
the doorbell INFO field in an SRIO packet.

Write to remote device
Selecting this option tells the block to perform a burst write using
Direct IO to the device at the address in Remote device ID. If
you clear this option, you must select Send doorbell interrupt
to remote device. Selecting this option enables the Remote
address (32-bit hex aligned to an 8-byte boundary option.

Remote address (32-bit hex aligned to an 8-byte boundary
Enter the address to write the output data to at the remote device.

Clearing Write to remote device disables this option. It
becomes and do not care field.

To ensure efficient data transfers, enter an address that aligns to
an 8-byte boundary in memory.

Specify local address for incoming signal buffer
Select this option to enable you to specify the local address for
the input data to this block. Select his option if you are pairing
this block with an SRIO Receive block that performs burst-read
operation. The SRIO Receive block needs to know the specific
address to read the data from. When you select this option,
you enable Local address (32-bit hex aligned to an 8 byte
boundary) where you enter the local address.

Local address (32-bit hex aligned to an 8 byte boundary
This address specifies the location of the incoming data. For burst
write operations, this value is a local address that SRIO uses to
form the direct I/O packets.

7-137

C6455 DSK SRIO Transmit

References

7-138

To ensure efficient data transfers, enter an address that aligns to
an 8-byte boundary in memory.

Show output port for status
When you select this parameter, the output port Stat appears on
the block. Stat returns the status of the write transmit operation.

For more information about SRIO, refer to TMS320TCI1648x Serial
RapidIO User’s Guide, Literature Number: SPRUE13. Texas
Instruments Incorporated.

C64x Avutocorrelation

Purpose

Library

Description

! i
AUTOCOR
Autocomalation

Dialog
Box

Autocorrelate input vector or frame-based matrix

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Autocorrelation block computes the autocorrelation of an
input vector or frame-based matrix. For frame-based inputs, the
autocorrelation is computed along each of the input’s columns. The
number of samples in the input channels must be an integer multiple of
eight. Input and output signals are real and Q.15.

Autocorrelation blocks support discrete sample times and little-endian
code generation only.

Block Parameters: Autocorrelation =l

—Autocommelation [maszk)

Campute the autocarnrelation of wectors or frame-bazed matrices. For
frame-based inputs, compute along the input'z columnz. [nput channels
muzt have a multiple of eight zamples. Input and output are real and 0.15.

YWhen et to 'Compute all non-negative lags'. compute using lags in the
range [0, lengthlinput]-1]. Othenwize, according to 'Masimum non-negative
lag', compute uzing lags in the range [0, masLag). The value of maxLag
must be such that masLag+1 iz divisible by 4, i.e.. masLag iz a member of
the set {3,7,11,15, .. L

— Parameters

v Compute all non-negative lags

I aximur non-negative lag [lezs than input [engthl:

I
0K I Cancel | Help | Apply

Compute all non-negative lags
When you select this parameter, the autocorrelation is performed
using all nonnegative lags, where the number of lags is one less
than the length of the input. The lags produced are therefore
in the range [0, length(input)-1]. When this parameter is not
selected, you specify the lags used in Maximum non-negative
lag (less than input length).

C64x Avutocorrelation

Algorithm

7-140

Maximum non-negative lag (less than input length)
Specify the maximum lag (maxLag) the block should use in
performing the autocorrelation. The lags used are in the range
[0, maxLag]. The maximum lag must be odd, and (maxLag+1)
must be divisible by 4, such as maxLag equal to 3, 7, or 19.
This parameter is enabled when you clear the Compute all
non-negative lags parameter.

In simulation, the Autocorrelation block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_autocor.
During code generation, this block calls the DSP_autocor routine to
produce optimized code.

C64x Bit Reverse

Purpose

Library

Description

Tl CEdx

L I

BITREY _CPLX
Bil Revarss

Dialog
Box

Algorithm

Examples

Bit-reverse elements of each complex input signal channel

“C64x DSP Library (tic64dsplib)” on page 6-11, “Transforms” on page
6-13

The C64x Bit Reverse block bit-reverses the elements of each channel
of a complex input signal X. The Bit Reverse block is used primarily to
provide correctly-ordered inputs and outputs to or from blocks that
perform FFTs. Inputs to this block must be 16-bit fixed-point data types.
Input vector lengths must be a power of two. Because you use this block
with FFT blocks the input vector length must be a power of two.

The Bit Reverse block supports discrete sample times and little-endian
code generation only.

Block Parameters: Bit Reverse x|

Bit Reverze [mazk)

Bit reverze the positions of the elements of a complex input vector. The
length of the input vector must be a power of bwo. Inputs can be any
1E-bit fixed-point data type.

Cancel | Help | Apply |

In simulation, the Bit Reverse block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bitrev_cplx.
During code generation, this block calls the DSP_bitrev_cplx routine
to produce optimized code.

The Bit Reverse block reorders the output of the C64x Radix-2 FFT in
the model below to natural order.

@ stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _En15 () [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

7-141

C64x Bit Reverse

The following code calculates the same FFT in the workspace. The
output from this calculation, y2, is displayed side-by-side with the

output from the model, c. The outputs match, showing that the Bit
Reverse block reorders the Radix-2 FFT output to natural order:

k = 4;

n = 2"k;

xr = zeros(n, 1);

xr(2) = 0.5;

xi = zeros(n, 1);

x2 = complex(xr, xi);

y2 = fft(x2);

[y2, c]
0.5000 0.5000
0.4619 - 0.19131i 0.4619 - 0.19131
0.3536 - 0.3536i 0.3535 - 0.35351
0.1913 - 0.46191i 0.1913 - 0.46191

0 - 0.50001 0 - 0.50001
-0.1913 - 0.4619i -0.1913 - 0.46191
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.19131
-0.5000 -0.5000
-0.4619 + 0.19131i -0.4619 + 0.19131
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.46191
0 + 0.50001 0 + 0.50001
0.1913 + 0.46191 0.1913 + 0.46191
0.3536 + 0.3536i 0.3535 + 0.35351
0.4619 + 0.19131 0.4619 + 0.19131
See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

7-142

C64x Block Exponent

Purpose

Library

Description

L

EEXP
Block Exponent

Dialog
Box

Algorithm

Minimum number of extra sign bits in each input channel

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Block Exponent block first computes the number of extra sign
bits of all values in each channel of an input signal, and then returns
the minimum number of sign bits found in each channel. The number
of elements in each input channel must be a multiple of eight. Input
elements must be 32-bit signed fixed-point data types. The output is

a vector of 16-bit integers — one integer for each channel of the input
signal.

This block is useful for determining whether every sample in a channel
1s using extra sign bits. If so, you can scale your signal by the minimum
number of extra sign bits to eliminate the common extra bits. This
increases the representable precision and decreases the representable
range of the signal.

Block Exponent blocks support both continuous and discrete sample
times. This block supports little-endian code generation only.

Block Parameters: Block EXponent x|

Block Exponent [mazk]

Compute the exponents [number of extra sign bitz] of all values in each
channel of the input signal and return the mininum exponent faund in
each channel. The number of elements it each input channel must be &
multiple of eight. &ll input elements must be signed 32-bit fied-point data
twpes. The block outputs a vector of 1E-bit integers, one integer for each
channel of the input signal.

Cancel | Help | Apply |

In simulation, the Block Exponent block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_bexp. During
code generation, this block calls the DSP_bexp routine given to produce
optimized code.

7-143

C64x Complex FIR

Purpose
Library
Description

¢ I

FIR_CPLY
Complkx FIR

Dialog
Box

7-144

Filter complex input signal using complex FIR filter
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x Complex FIR block filters a complex input signal X using

a complex FIR filter. This filter is implemented using a direct form
structure. Each input channel must contain an integer multiple of four
samples, with four samples as the minimum required.

The number of FIR filter coefficients, which are given as elements of the
input vector H, must be even. The product of the number of elements
of X and the number of elements of H must be at least four. Inputs,
coefficients, and outputs are all Q.15 data types. For each channel, the
number of input elements must be a multiple of four.

The Complex FIR block supports discrete sample times and little-endian
code generation only.

Block Parameters: Complex FIR x|

— Complex FIR [maszk)

Filter a complex input signal =, having Nx samples per channel. using a
complex FIR filker. The filter coefficients are specified by a complex vectar
H, with an even number of elements MH. The number of input samples
per channel must be a multiple of 4. Input signale, coefficients, and output
zighals are all .15 data types.

— Parameters

Coefficient source: [E3sr g ERrEnn,
Coefficients [H):
Icomplex[[ﬂ.'l, 0.2.0.2.01]

Initial conditions:

jo

0Ok I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

C64x Complex FIR
|

e Specify via dialog — Enter the coefficients in the
Coefficients (H) parameter in the dialog box

® Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X. Choosing
this option adds an input port to the block.

Coefficients (H)
Designate the filter coefficients in vector format. There must
be an even number of coefficients. This parameter is visible
only when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
Lets you provide initial conditions for the filter. If your initial
conditions for the channels are

e All the same, enter a scalar that applies to all channels.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. These
conditions then apply to all channels. The length of this vector
must be one less than the number of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions for every individual channel. The number of rows of
this matrix must be one less than the number of coefficients,
and the number of columns of this matrix must be equal to
the number of channels.

You may enter real-valued initial conditions. Zero-valued
imaginary parts will be assumed.

Algorithm In simulation, the Complex FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_cplx.
During code generation, this block calls the DSP_fir_cplx routine to
produce optimized code.

See Also C64x General Real FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real
FIR, C64x Symmetric Real FIR

7-145

C64x Convert Floating-Point to Q.15

Purpose

Library

Description

‘ Tl Co4x
i
FLTOQ15

Convert Floating-
Point to .15

Dialog
Box

Algorithm

See Also

7-146

Convert floating-point signal to Q.15 fixed-point

“C64x DSP Library (tic64dsplib)” on page 6-11, “Conversions” on page
6-12

The C64x Convert Floating-Point to Q.15 block converts a
single-precision floating-point input signal to a Q.15 output signal.
Input can be real or complex. For real inputs, the number of input
samples must be even.

The Convert Floating-Point to Q.15 block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Block Parameters: Convert Floating- Poi x|

Convert Floating-Faint to (.15 [mazk]

Convert a single-precizion floating-point signal bo a Q.15 signal. Both real
and complex inputs are allowed. However, for real inputs only, the tatal
number of input zamples must be even.

Cancel | Help | Apply |

In simulation, the Convert Floating-Point to Q.15 block is equivalent to
the TMS320C64x DSP Library assembly code function DSP_f1toq15.
During code generation, this block calls the DSP_f1toq15 routine to
produce optimized code.

C64x Convert Q.15 to Floating Point

C64x Convert Q.15 to Floating-Point

Purpose

Library

Description

‘ Tl CEdn
i
Q1ATOFL

Conwer Q.13
lo Floating-Point

Dialog
Box

Algorithm

See Also

Convert Q.15 fixed-point signal to single-precision floating-point

“C64x DSP Library (tic64dsplib)” on page 6-11, “Conversions” on page
6-12

The C64x Convert Q.15 to Floating-Point block converts a Q.15 input
signal to a single-precision floating-point output signal. Input can be
real or complex. For real inputs, the number of input samples must
be even.

The Convert Q.15 to Floating-Point block supports both continuous and
discrete sample times. This block supports little-endian code generation
only.

Block Parameters: Convert (.15 to Floaking x|

Canwert (.15 ta Floating-Paint [mazk]

Convert a 0.15 signal to a single-precision floating-point signal. Both real
and complex inputs are allowed. However, for real inputs only, the tatal
number of input zamples must be even.

Cancel | Help | Apply |

In simulation, the Convert Q.15 to Floating-Point block is equivalent to
the TMS320C64x DSP Library assembly code function DSP_q15tof1l.
During code generation, this block calls the DSP_q15tofl routine to
produce optimized code.

C64x Convert Floating-Point to Q.15

7-147

C64x FFT

Purpose

Library

Description

7-148

Tl Codx

¢

FFT15¥16R

FFT

Decimation-in-frequency forward FFT of complex input vector

“C64x DSP Library (tic64dsplib)” on page 6-11, “Transforms” on page
6-13

The C64x FFT block computes the decimation-in-frequency forward
FFT, with scaling between stages, of each channel of a complex input
signal. The input length of each channel must be both a power of
two and in the range 8 to 16,384, inclusive. The input must also be
in natural (linear) order. The output of this block is a complex signal
in natural order. Inputs and outputs are all signed 16-bit fixed-point
data types.

The fft16x16r routine used by this block employs butterfly stages to
perform the FFT. The number of butterfly stages used, S, depends on
the input length L = 27k. If k is even, then S = k/2. If k is odd, then
S = (k+1)/2.

If k is even, then L is a power of two as well as a power of four, and
this block performs all S stages with radix-4 butterflies to compute
the output. If k is odd, then L is a power of two but not a power of
four. In that case this block performs the first (S-1) stages with radix-4
butterflies, followed by a final stage using radix-2 butterflies.

To minimize noise, the FFT block also implements a divide-by-two
scaling on the output of each stage except for the last. Therefore, to
ensure that the gain of the block matches that of the theoretical FFT,
the FFT block offsets the location of the binary point of the output
data type by (S-1) bits to the right relative to the location of the binary
point of the input data type. That is, the number of fractional bits of
the output data type equals the number of fractional bits of the input
data type minus (S-1).

OutputFractionalBits = InputFractionalBits — (5§ -1)

The FFT block supports both continuous and discrete sample times.
This block supports little-endian code generation.

C64x FFT
|

Dia Iog Block Parameters: FFT x|
Box FFT [maszk)

Compute the decimation-in-frequency forsard FFT of a comples input
wectar, The input wector must be in natural (inear] arder. The input length
muzt be in the range 8 to 16384, inclusive, and must be & power of bwo.
The complex output wector iz in natural (inear] order. Inputs and outputs
are signed 1E-bit fixed-point data types.

Cancel | Help | Apply |

Algorithm In simulation, the FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fft16x16r.
During code generation, this block calls the DSP_fft16x16r routine
to produce optimized code.

See Also C64x Radix-2 FFT, C64x Radix-2 IFFT

7-149

C64x General Real FIR

Purpose
Library

Description

T Codx

L I

FIR_GEH
Gienemal Real FIR

Dialog
Box

7-150

Filter real input signal using real FIR filter
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x General Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.
Signal X must contain at least four samples per channel and the
number of samples must be an integer multiple of four.

The filter coefficients are specified by a real vector H, which must
contain at least five elements. The coefficients must be in reversed
order. All inputs, coefficients, and outputs are Q.15 signals.

The General Real FIR block supports discrete sample times and
supports little-endian code generation only.

Block Parameters: General Real FIR x|
— Gerneral Beal FIR [mask)

Filter a real input signal ¥ uzing a real FIR filter. The filker coefficients are
specified by a real vectar H, which must contain at least five elements.
The coefficients must be it reversed order. Input signalz, coefficients,
and output signals are all .15 data types. The number of signal samples
per channel must be a multiple of 4.

— Parameters

Coefficient source: [E3sr g ERrEnn,
Coefficients [H):
|m5u¢uauaun

Initial conditions:
jo

0Ok I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the Coefficients
(H) parameter in the dialog box

C64x General Real FIR
|

® Input port — Accept the coefficients from port H. This port must
have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. This parameter is tunable in
simulation.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

The initial conditions must be real.

Algorithm In simulation, the General Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir gen.
During code generation, this block calls the DSP_fir_gen routine to
produce optimized code.

See Also C64x Complex FIR, C64x Radix-4 Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

7-151

C64x LMS Adaptive FIR

Purpose

Library

Description

7-152

x@ R
B HE

FIRLIMZ2

LIS Aclaptive FIR

LMS adaptive FIR filtering
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x LMS Adaptive FIR block performs least-mean-square (LMS)
adaptive filtering. This filter is implemented using a direct form
structure.

The following constraints apply to the inputs and outputs of this block:

® The scalar input X must be a Q.15 data type.
® The scalar input B must be a Q.15 data type.
e The scalar output R is a Q1.30 data type.

¢ The output H has length equal to the number of filter taps and is a
Q.15 data type. The number of filter taps must be a positive integer
that is a multiple of four.

This block performs LMS adaptive filtering according to the equations
e(n+1) =dn+1)-[H(n) - X(n+1)]

and
H(n+1) = Hn)+[pe(n+1)-X(n+ 1)]

where

® 1 designates the time step.
e X is a vector composed of the current and last n H — 1 scalar inputs.

¢ d is the desired signal. The output I converges to d as the filter
converges.

e H is a vector composed of the current set of filter taps.

e @is the error, or d — [H(n)-X(n+1)].

H is the step size.

C64x LMS Adaptive FIR

For this block, the input B and the output R are defined by
B = pe(n+1)

R =Hin)-X(n+1)

which combined with the first two equations, result in the following
equations that this block follows:

ein+1l)=dn+1)-R

Hin+1) = Hn)+[B-X(n+1)]

d and B must be produced externally to the LMS Adaptive FIR block.
See “Examples” on page 7-154 below for a sample model where this
is done.

The LMS Adaptive FIR block supports discrete sample times and
supports little-endian code generation only.

The rounding mode used is floor, and the saturation mode is wrap. All
intermediate products have s32Q30 data type. The update equation is
as follows:

H; = H; +S16Q15(532Q30(B) x$32Q30(X;))
R=Y (X;xH,)
N

where N is the number of filter taps.

Note This block does not implement a leaky LMS algorithm, so
comparison to the leakage factor of the LMS block of the Signal
Processing Blockset software is not appropriate.

7-153

C64x LMS Adaptive FIR

Dialog
Box

Algorithm

Examples

7-154

=] Function Block Parameters: LMS Adaptive FIR1 x|

— LMS Adaptive FIR [mazk] (link]

Ferform least-mean-zquare [LM5] adaptive FIR fikering. The number of FIR filker taps
muzt be a pozitive, even integer. The scalar inpute X and B must be .15 data types.
The scalar output F iz a 01,30 data type. The output H has length equal to the
number of filter taps and iz a 0.15 data type.

— Parameter.
Mumber of FIR filter taps:
Iritial walue of filker taps:
[

v Output filter taps

] I Cancel | Help | Spply |

Number of FIR filter taps
Designate the number of filter taps. The number of taps must be
a positive integer that is also a multiple of four.

Initial value of filter taps
Enter the initial value of the filter taps.

Output filter coefficients H?
If you select this option, the filter taps are produced as output H.
If you do not select this option, H is suppressed.

In simulation, the LMS Adaptive FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_firlms2.
During code generation, this block calls the DSP_firlms2 routine to
produce optimized code.

The following model uses the LMS Adaptive FIR block.

C64x LMS Adaptive FIR
|

Eiﬁl doule [] single X) R g
e | A
Random Data Type Conversion

Source — — — —— — — — B 1

Y

stix1f_En14 I sfinlf_Enls

Subtract Gain
Convatt < ‘;rl B | sfixd2_En0

stixi6 s [54xi]

H ———

Convert

Signal To
Wintepace

| FIRLME2
LhS Adaptive FIR

| 1

g ~ e
Sflb_Enid | o
L

The portion of the model enclosed by the dashed line produces the
signal B and feeds it back into the LMS Adaptive FIR block. The inputs
to this region are X and the desired signal d, and the output of this
region is the vector of filter taps H. Thus this region of the model acts
as a canonical LMS adaptive filter. For example, compare this region
to the adaptfilt.1lms function in Filter Design Toolbox software.
adaptfilt.1lms performs canonical LMS adaptive filtering and has the
same inputs and output as the outlined section of this model.

To use the LMS Adaptive FIR block you must create the input B in
some way similar to the one shown here. You must also provide the
signals X and d. This model simulates the desired signal d by feeding
X into a digital filter block. You can simulate your desired signal in a
similar way, or you may bring d in from the workspace with a From
Workspace or codec block.

7-155

C64x Matrix Multiply

Purpose

Library

Description

Tl CEdx

MAT_ ML

a :
¥
B

Patriz hultipby

Matrix multiply two input signals

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Matrix Multiply block multiplies two input matrices A and B.
Inputs and outputs are real, 16-bit, signed fixed-point data types. This
block wraps overflows when they occur.

The product of the two 16-bit inputs results in a 32-bit accumulator
value. The Matrix Multiply block, however, only outputs 16 bits.
You can choose to output the highest or second-highest 16 bits of the
accumulator value.

Alternatively, you can choose to output 16 bits according to how many
fractional bits you want in the output. The number of fractional bits in
the accumulator value is the sum of the fractional bits of the two inputs.

7-156

Accumulator
Input A Input B Value
Total Bits 16 16 32
Fractional R S R+ S
Bits

Therefore R+S is the location of the binary point in the accumulator
value. You can select 16 bits in relation to this fixed position of the
accumulator binary point to give the desired number of fractional bits
in the output (see “Examples” on page 7-158 below). You can either
require the output to have the same number of fractional bits as one of
the two inputs, or you can specify the number of output fractional bits
in the Number of fractional bits in output parameter.

The Matrix Multiply block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

C64x Matrix Multiply
|

4 =
Dla |og Block Parameters: Matrix Multiply x|
Box — M atrix Multiply [mazk)

Perform matrix multipication v'=4*B. Inputz & and B must be real. Al input
and output signals are signed 16-bit fised-point data types. Intermediate
accumulations have 32 bits [b31:b0) and wrap when overflow ocours..

— Parameters

Set fractional bits in output to: (78NS

Humber of fractional bits in output:
B

0K I Cancel | Help | Apply |

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Choose which 16 bits to output from the list:

e Match input A — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input A (or R in the discussion
above).

e Match input B — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input B (or S in the discussion
above).

® Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value.

® Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value.

e User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter.

7-157

C64x Matrix Multiply

Algorithm

Examples

7-158

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is enabled only when you select
User-defined for Set fractional bits in output to.

In simulation, the Matrix Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_mul.
During code generation, this block calls the DSP_mat_mul routine to
produce optimized code.

Example 1

Suppose A and B are both Q.15. The data type of the resulting
accumulator value is therefore the 32-bit data type Q1.30 (R + S = 30).
In the accumulator, bits 31:30 are the sign and integer bits, and bits
29:0 are the fractional bits. The following table shows the resulting
data type and accumulator bits used for the output signal for different
settings of the Set fractional bits in output to parameter.

Set fractional bits | Data Type Accumulator Bits
in output to

Match input A Q.15 b30:b15

Match input B Q.15 b30:b15

Match high bits of | Q1.14 b31:b16

acc.

Match high bits of | Q.15 b30:b15

prod.

Example 2

Suppose A is Q12.3 and B is Q10.5. The data type of the resulting
accumulator value is therefore Q23.8 (R + S = 8). In the accumulator,
bits 31:8 are the sign and integer bits, and bits 7:0 are the fractional
bits. The following table shows the resulting data type and accumulator
bits used for the output signal for different settings of the Set
fractional bits in output to parameter.

C64x Matrix Multiply

See Also

Set fractional bits | Data Type Accumulator Bits
in output to

Match input A Q12.3 b20:b5

Match input B Q10.5 b18:b3

Match high bits of | Q23.-8 b31:b16

acc.

Match high bits of | Q22.-7 b30:b15

prod.

C64x Vector Multiply

7-159

C64x Matrix Transpose

Purpose

Library

Description

E i
MAT_TRANS
Matrix Transposs

Dialog
Box

Algorithm

7-160

Matrix transpose input signal

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Matrix Transpose block transposes an input matrix or vector.
A 1-D input is treated as a column vector and transposed to a row
vector. Input and output signals are any real, 16-bit, signed fixed-point
data type. Both the number of rows and the number of columns must
be multiples of four.

The Matrix Transpose block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Note If you use Target Function Library (TFL) technology with this
block, the TI compiler generates processor and compiler-specific
instructions that improve the performance of the generated code. For
more information, consult“Introduction to Target Function Libraries”.

Block Parameters: Matrix Transpose x|

I atri= Transpose [mask)

Campute the matrix tranzpose. Wector input sighals are treated as [Mxl]
matrices. The output iz alwaysz a matrix. The input and output data types
may be any real sighed 16-bit fixed-point data type. The number of rows
and the number of columns must each be a multiple of four.

Cancel | Help | Apply |

In simulation, the Matrix Transpose block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mat_trans.
During code generation, this block calls the DSP_mat_trans routine
to produce optimized code.

C64x Radix-2 FFT

Purpose

Library

Description

Tl CEdx

%

RADIXKZ

Radix2 FFT

Dialog
Box

Algorithm

Examples

Radix-2 decimation-in-frequency forward FFT of complex input vector

“C64x DSP Library (tic64dsplib)” on page 6-11, “Transforms” on page
6-13

The C64x Radix-2 FFT block computes the radix-2
decimation-in-frequency forward FFT of each channel of a

complex input signal. The input length of each channel must be both
a power of two and in the range 16 to 32,768, inclusive. The input
must also be in natural (linear) order. The output of this block is

a complex signal in bit-reversed order. Inputs and outputs are signed
16-bit fixed-point data types, and the output data type matches the
input data type.

You can use the C64x Bit Reverse block to reorder the output of the
Radix-2 FFT block to natural order.

The Radix-2 FFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

=
Fadiz-2 FFT [mazk]

Compute the radis-2 decimation-in-frequency forward FFT of a comples
input vector. The input vectar must be in natural linear) arder. The input
length riuzt be in the range 16 ta 32768, inclusive, and must be & power
of two. The output wector iz complex and in bit-reversed order. Inputs and
outputs are signed 16-bit fixed-point data types.

Cancel | Help | Apply |

In simulation, the Radix-2 FFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

The output of the Radix-2 FFT block is bit-reversed. This example

shows you how to use the C64x Bit Reverse block to reorder the output
of the Radix-2 FFT block to natural order.

7-161

C64x Radix-2 FFT

@ stin 16 _Enif (o) [16x1 RADIXZ stin 16 _Enif (o) [16x1 BITREV_CPLX stin 16 _En15 () [16x1

Constant Radix2 FFT Bit Reverse Signal Ta
Matepaca?

The following code calculates the same FFT as the above model in the
workspace. The output from this calculation, y2, is then displayed
side-by-side with the output from the model, c. The outputs match,
showing that the Bit Reverse block does reorder the Radix-2 FFT block
output to natural order:

k = 4;
n = 2"k;
Xr = zeros(n, 1);
xr(2) = 0.5;
xi = zeros(n, 1);
x2 = complex(xr, xi);
y2 = fft(x2);
[y2, c]
0.5000 0.5000
0.4619 - 0.1913i 0.4619 - 0.19131
0.3536 - 0.3536i 0.3535 - 0.3535i1
0.1913 - 0.4619i 0.1913 - 0.4619i
0 - 0.50001 0 - 0.50001i
-0.1913 - 0.4619i -0.1913 - 0.4619i
-0.3536 - 0.3536i -0.3535 - 0.3535i
-0.4619 - 0.1913i -0.4619 - 0.1913i
-0.5000 -0.5000
-0.4619 + 0.1913i -0.4619 + 0.19131i
-0.3536 + 0.3536i -0.3535 + 0.3535i
-0.1913 + 0.4619i -0.1913 + 0.4619i
0 + 0.50001 0 + 0.50001
0.1913 + 0.4619i 0.1913 + 0.4619i
0.3536 + 0.3536i 0.3535 + 0.35351
0.4619 + 0.19131i 0.4619 + 0.19131
See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 IFFT

7-162

C64x Radix-2 IFFT

Purpose

Library

Description

Tl CE4x

¢ I

RADIXKZ
Radix2 IFFT

Radix-2 inverse FFT of complex input vector

“C64x DSP Library (tic64dsplib)” on page 6-11, “Transforms” on page
6-13

The C64x Radix-2 IFFT block computes the radix-2 inverse FFT

of each channel of a complex input signal. This block uses a
decimation-in-frequency forward FFT algorithm with butterfly weights
modified to compute an inverse FFT. The input length of each channel
must be both a power of two and in the range 16 to 32,768, inclusive.
The input must also be in natural (linear) order. The output of this
block is a complex signal in bit-reversed order. Inputs and outputs are
signed 16-bit fixed-point data types.

The radix2 routine used by this block employs a radix-2 FFT of length
L=22k. To ensure that the gain of the block matches that of the
theoretical IFFT, the Radix-2 IFFT block offsets the location of the
binary point of the output data type by k bits to the left relative to the
location of the binary point of the input data type. That is, the number
of fractional bits of the output data type equals the number of fractional
bits of the input data type plus k.

OutputFractionalBits = InputFractionalBits + (k)

You can use the C64x Bit Reverse block to reorder the output of the
Radix-2 IFFT block to natural order.

The Radix-2 TFFT block supports both continuous and discrete sample
times. This block supports little-endian code generation.

7-163

C64x Radix-2 IFFT

Dia Iog Block Parameters: Radix-2 IFFT |
Box Fadis-2 IFFT [mazk]

Compute the radis-2 inverse FFT of a comples input vector. The block
uzes aradix-2 decimation-in-frequency forvard FET algarithm with butterfly
weights modified to compute an inversze FFT. The input vectar must be in
natural (linear] order. The input length must be in the range 16 ta 32768,
inclugive, ahd muzt be a power of bwo. The comples output vector is in
bit-reversed order. Inputs and outputs are signed 16-bit fixed-point data
types.

Cancel | Help | Apply |

Algorithm In simulation, the Radix-2 IFFT block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_radix2. During
code generation, this block calls the DSP_radix2 routine to produce
optimized code.

See Also C64x Bit Reverse, C64x FFT, C64x Radix-2 FFT

7-164

C64x Radix-4 Real FIR

Purpose
Library

Description

Tl CEdx

B |

FIR_R4
Radix4 Real FIR

Dialog
Box

Filter real input signal using real FIR filter
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x Radix-4 Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four.
The filter coefficients are specified by a real vector, H. The number of
filter coefficients must be a multiple of four and must be at least eight.
The coefficients must also be in reversed order {b(n), b(n-1),...,(b(0)}. All
inputs, coefficients, and outputs are Q.15 signals.

The Radix-4 Real FIR block supports discrete sample times and
supports little-endian code generation only.

Block Parameters: Radix-4 Real FIR x|
— Radis-4 Real FIR [mask)

Filter a real input signal * uzing a real FIR filter. The number of input
zamples per channel must be a multiple of 4. The filter coefficients are
specified by a real vector H. The number of coefficients must be a
multiple of four and must be at least eight. The coefficients must be in
reverzed order. Input signals, coefficients, and output signals are all 315
data types.

— Parameters

Coefficient source: LI igeERrERS,
Coefficients [H):
I[D.B, 07060504 03.0201]

Initial conditions:

o

(u] I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

7-165

C64x Radix-4 Real FIR

e Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format. This parameter
is only visible when Specify via dialog is selected for the
Coefficient source parameter. Enter the n coefficients in
reversed order — b(n), b(n-1),...,(b(0). This parameter is tunable
in simulation.

Initial conditions
If the initial conditions are

e All the same, enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-4 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir r4. During
code generation, this block calls the DSP_fir_r4 routine to produce
optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-8 Real FIR,
C64x Symmetric Real FIR

7-166

C64x Radix-8 Real FIR

Purpose
Library

Description

T CE4x

4

FIR_Ra

Radix-3 Real FIR

Dialog
Box

Filter real input signal using real FIR filter
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x Radix-8 Real FIR block filters a real input signal X using a
real FIR filter. This filter is implemented using a direct form structure.

The number of input samples per channel must be a multiple of four.
The filter coefficients are specified by a real vector, H. The number of
coefficients must be an integer multiple of eight. The coefficients must
be in reversed order — {b(n), b(n-1),...,(b(0)}. All inputs, coefficients, and
outputs are Q.15 signals.

The Radix-8 Real FIR block supports discrete sample times and
little-endian code generation only.

Block Parameters: Radix-8 Real FIR i x|
— Radis-8 Real FIR [mask)

Filter a real input signal # uzing a real FIR filter. The number of input
zamples per channel must be a multiple of 4. The filter coefficients are
zpecified by a real vector H. The number of coefficients must be a
multiple of eight. The coefficients must be in reversed order. [nput
zignals, coefficients, and output signalz are all .15 data types.

— Parameters

Coefficient source: [E3sr g ERrEnn,
Coefficients [H):
|[D.8, 07.06.0504.030201]

Initial conditions:
jo

0Ok I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

7-167

C64x Radix-8 Real FIR

e Input port — Accept the coefficients from port H. This port
must have the same rate as the input data port X

Coefficients (H)
Designate the filter coefficients in vector format, entering them in
reversed order — b(n), b(n-1),...,(b(0). This parameter is visible
when Specify via dialog is selected for the Coefficient
source parameter. This parameter is tunable in simulation.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Initial conditions must be real.

Algorithm In simulation, the Radix-8 Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir r8. During
code generation, this block calls the DSP_fir_r8 routine to produce
optimized code.

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Symmetric Real FIR

7-168

C64x Real Forward Lattice All-Pole IIR
|

Purpose Filter real input signal using lattice IIR filter
Librclry “C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12
Description The C64x Real Forward Lattice All-Pole IIR block filters a real input

signal using an autoregressive forward lattice filter. The input and
¢ output signals must be the same 16-bit signed fixed-point data type.
* The reflection coefficients must be real and Q.15. The number of

NALAT reflection coefficients must be greater than or equal to ten; they must
Hﬂ*"'FﬁF"’*‘;"II'E""':B be even; and they must be in reversed order — k(n), k(n-1),..., k(0).
All-Po

Using an even number of reflection coefficients maximizes the speed of
your generated code.

The Real Forward Lattice All-Pole IIR block supports discrete sample
times and supports little-endian code generation only.

Dia Iog Block Parameters: Real Forward Lattice All x|
Box — Real Forward Lattice All-Pole 1R [maszk)

Filter a real input signal using an auto-regressive (AR fonward lattice filker,
The input] and output [R] signals must be the same 16-bit signed
fixed-point data type. The reflection coefficients (K] must be real and 0.15.
The number of reflection coefficients must be even and greater than or
equal to ten, and the coefficients must be in reversed order.

— Parameters

Coefficient source: [E3sr g ERrEnn,
Reflection coefficients:
|005=[10.9,6.7.6.5.4.3.2.1]

Initial conditions:
jo

0Ok I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

® Specify via dialog — Enter the coefficients in the
Reflection coefficients parameter in the dialog box

7-169

C64x Real Forward Lattice All-Pole IIR

Algorithm

See Also

7-170

® Input port — Accept the coefficients from port K

Reflection coefficients
Designate the reflection coefficients of the filter in vector format.
The number of coefficients must be greater than or equal to ten
and be even. Enter the coefficients in reverse order from k(n) to
k(0). Using an even number of reflection coefficients maximizes
the speed of your generated code. This parameter is visible when
you select Specify via dialog for the Coefficient source
parameter. This parameter is tunable in simulation.

Initial conditions
If your block initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length (number of elements) of this vector must be the same as
the number of reflection coefficients in your filter.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows (initial conditions for one
channel) of this matrix must be the same as the number of
reflection coefficients, and the number of columns of this matrix
must be equal to the number of channels.

In simulation, the Real Forward Lattice All-Pole IIR block is equivalent
to the TMS320C64x DSP Library assembly code function DSP_iirlat.
During code generation, this block calls the DSP_iirlat routine to
produce optimized code.

C64x Real IIR

C64x Real IIR

Purpose
Library

Description
‘TI G
IR

Real IR

Dialog
Box

Filter real input signal using IIR filter
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x Real IIR block filters a real input signal X using a real
autoregressive moving-average (ARMA) IIR Filter. This filter is
implemented using a direct form I structure. You must use at least
eight input samples.

There must be five AR coefficients and five MA coefficients. The first
AR coefficient is always assumed to be one. Inputs, coefficients, and
output are Q.15 data types.

The Real IIR block supports discrete sample times and supports
little-endian code generation only.

Block Parameters: Real IIR =l
—Real IR [mask]

Filter a real input signal # uzing a real auto-regressive moving-average
[ARKA] IR fiker. There must be five AR coefficients and five Ma
coefficients; howewver, the first 4R coefficient iz assumed to be equal to
one. The number of input samples must be at least eight. Inputs,
coefficients, and output are &ll 015 data types.

— Parameters

Coefficient sources: [

MA [humerator) coefficients:
|[u.1 0.20.30.405]

AR [denominator] coefficients:
|[1 01020304

Input state intial conditions:
jo

Output state initial conditions:

o

] I Cancel Help Spply

7-171

C64x Real IIR

Coefficient sources
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the
MA (numerator) coefficients and AR (denominator)
coefficients parameters in the dialog box

® Input ports — Accept the coefficients from ports MA and AR

MA (numerator) coefficients
Designate the moving-average coefficients of the filter in vector
format. There must be five MA coefficients. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

AR (denominator) coefficients
Designate the autoregressive coefficients of the filter in vector
format. There must be five AR coefficients, however the first AR
coefficient is assumed to be equal to one. This parameter is only
visible when Specify via dialog is selected for the Coefficient
sources parameter. This parameter is tunable in simulation.

Input state initial conditions
If the input state initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the input state initial conditions for one
channel. The length of this vector must be four.

¢ Different across channels, enter a matrix containing all input
state 1nitial conditions. This matrix must have four rows.

Output state initial conditions
If the output state initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the output state initial conditions for one
channel. The length of this vector must be four.

7-172

C64x Real IIR
|

¢ Different across channels, enter a matrix containing all output
state 1nitial conditions. This matrix must have four rows.

Algorithm In simulation, the Real IIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_iir. During
code generation, this block calls the DSP_iir routine to produce
optimized code.

See Also C64x Real Forward Lattice All-Pole IIR

7-173

C64x Reciprocal

Purpose

Library

Description

ttl Fk

RECIF1G
Recipmocal

Dialog
Box

Algorithm

7-174

Fraction and exponent of reciprocal of real input signal

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Reciprocal block computes the fractional (F) and exponential
(E) portions of the reciprocal of a real Q.15 input, such that the
reciprocal of the input is F*(2F). The fraction is Q.15 and the exponent
is a 16-bit signed integer.

The Reciprocal block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Block Parameters: Reciprocal x|

Recipracal [mask]

Compute the fractional [F] and exponential E] portions of the reciprocal of
areal (.15 input, such that the recipracal of the input iz F(2°E). The
fraction iz 0.15 and the exponent is a signed 16-bit integer.

Cancel | Help | Apply |

In simulation, the Reciprocal block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_recip16.
During code generation, this block calls the DSP_recip16 routine to
produce optimized code.

C64x Symmetric Real FIR

Purpose
Library

Description

Tl CEdx

%

FIR_5YHM

Symmeatrc Real FIR

Filter real input signal using FIR filter
“C64x DSP Library (tic64dsplib)” on page 6-11, “Filters” on page 6-12

The C64x Symmetric Real FIR block filters a real input signal using a
symmetric real FIR filter. This filter is implemented using a direct
form structure.

The number of input samples per channel must be even. The filter
coefficients are specified by a real vector H, which must be symmetric
about its middle element. Thus you must use an odd number of
coefficients. The number of coefficients must be of the form 16k + 1,
where k is a positive integer. This block wraps overflows that occur. The
input, coefficients, and output are 16-bit signed fixed-point data types.

Intermediate multiplies and accumulates performed by this filter
result in 32-bit accumulator values. However, the Symmetric Real FIR
block only outputs 16 bits. You can choose to output 16 bits of the
accumulator value in one of the following ways.

Match input x Output 16 bits of the accumulator value
such that the output has the same number
of fractional bits as the input

Match coefficients Output 16 bits of the accumulator value
h such that the output has the same number
of fractional bits as the coefficients

Match high 16 bits Output bits 31 - 16 of the accumulator value
of acc.

Match high 16 bits Output bits 30 - 15 of the accumulator value
of prod.

User-defined Output 16 bits of the accumulator value such
that the output has the number of fractional
bits specified in the Number of fractional
bits in output parameter

7-175

C64x Symmetric Real FIR

The Symmetric Real FIR block supports discrete sample times and
only little-endian code generation.

.
DICI Iog Block Parameters: Symmektric Real FIR x|

Box — Syrmetric Real FIR [mask)

Filter a real input signal X uzsing a symmetric real FIR fiter. The number of
input zamples per channel must be a multiple of four. The filker coefficients
are specified by a real vector H, which must be spmmetric about itz middle
element. The nurmber of elements in H must be of the form 16k+1 where k
iz a pozitive integer. Intermediate accumulations have 32 bits (b31:b0)
and uze wrap-around arithmetic. All input and output signals are signed
1E-bit fixed-point data types.

— Parameters

Coefficient source:

Coefficients:
ID.DE “M.2.3.4.5,6.7.8,9.8.7.6,6, 4.3, 2.1]

Set fractional bits in coefficients to: I Best precizion j

IHumber of fractional Bits in cosflicients:
Jio

Set fractional bits in autput to: | atch high 16 bits of product (b30:b > |

Hurmber of fractional Bits in output:
Jio

Initial conditions:
o

0K I Cancel | Help | Apply |

Coefficient source
Specify the source of the filter coefficients:

e Specify via dialog — Enter the coefficients in the
Coefficients parameter in the dialog box

e Input port — Accept the coefficients from port H

Coefficients
Enter the coefficients in vector format. Coefficients must be
symmetric about the middle element of the vector, so the number

7-176

C64x Symmetric Real FIR

of coefficients must be odd. This parameter is visible when
Specify via dialog is specified for the Coefficient source
parameter. This parameter is tunable in simulation.

Set fractional bits in coefficients to
Specify the number of fractional bits in the filter coefficients:

® Match input X — Sets the coefficients to have the same
number of fractional bits as the input

® Best precision — Sets the number of fractional bits of the
coefficients such that the coefficients are represented to the
best precision possible

e User-defined — Sets the number of fractional bits in
the coefficients with the Number of fractional bits in
coefficients parameter

This parameter is visible only when Specify via dialog is
specified for the Coefficient source parameter.

Number of fractional bits in coefficients
Specify the number of bits to the right of the binary point in the
filter coefficients. This parameter is visible only when Specify
via dialog is specified for the Coefficient source parameter,
and is only enabled if User-defined is specified for the Set
fractional bits in coefficients to parameter.

Set fractional bits in output to
Only 16 bits of the 32 accumulator bits are output from the block.
Select which 16 bits to output:

e Match input X — Output the 16 bits of the accumulator value
that cause the number of fractional bits in the output to match
the number of fractional bits in input X

e Match coefficients H — Output the 16 bits of the
accumulator value that cause the number of fractional bits in

the output to match the number of fractional bits in coefficients
H

7-177

C64x Symmetric Real FIR

e Match high bits of acc. (b31:b16) — Output the highest
16 bits of the accumulator value

e Match high bits of prod. (b30:b15) — Output the
second-highest 16 bits of the accumulator value

e User-defined — Output the 16 bits of the accumulator value
that cause the number of fractional bits of the output to match
the value specified in the Number of fractional bits in
output parameter

See Matrix Multiply “Examples” on page 7-158 for demonstrations
of these selections.

Number of fractional bits in output
Specify the number of bits to the right of the binary point in
the output. This parameter is only enabled if User-defined is
selected for the Set fractional bits in output to parameter.

Initial conditions
If the initial conditions are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel.
The length of this vector must be one less than the number
of coefficients.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be one less
than the number of coefficients, and the number of columns of
this matrix must be equal to the number of channels.

Algorithm In simulation, the Symmetric Real FIR block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_fir_ sym.
During code generation, this block calls the DSP_fir_sym routine to
produce optimized code.

7-178

C64x Symmetric Real FIR
|

See Also C64x Complex FIR, C64x General Real FIR, C64x Radix-4 Real FIR,
C64x Radix-8 Real FIR

7-179

C64x Vector Dot Product

Purpose

Library

Description

W ttl
s
hi
COTRROD
Vector Dot Pooduct

Dialog
Box

Algorithm

7-180

Vector dot product of real input signals

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Dot Product block computes the vector dot product

of two real input vectors, X and Y. The input vectors must have the
same dimensions and must be signed 16-bit fixed-point data types. The
number of samples per channel of the inputs must be a multiple of four.
The output is a signed 32-bit fixed-point scalar on each channel, and
the number of fractional bits of the output is equal to the sum of the
number of fractional bits of the inputs.

The Vector Dot Product block supports both continuous and discrete

sample times. This block supports little-endian code generation only.

Block Parameters: Yector Dot Product x|

Wector Dot Product [mask)

Campute the wector dot product of real inputs 3 and . [nputs must have
the zame dimenzionz, and the number of zamples per channel must be a
multiple of four. Inputs must alzo be signed 16-bit fised-point data types.
The output iz a signed 32-bit fised-point scalar on each channel.

Cancel | Help | Apply |

In simulation, the Vector Dot Product block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_dotprod.
During code generation, this block calls the DSP_dotprod routine to
produce optimized code.

C64x Vector Maximum Index

Purpose
Library

Description

Tl CEdx

! i
R D0
Wactor Maximum [ncdex

Dialog
Box

Algorithm

Zero-based index of maximum value element in each input signal
channel

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Maximum Index block computes the zero-based index
of the maximum value element in each channel (vector) of the input
signal. The input may be any real, 16-bit, signed fixed-point data type.
The number of samples per input channel must be an integer multiple
of 16 and at least 48. The output data type is 32-bit signed integer.

The Vector Maximum Index block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Yector Maxinum Index x|

Wector Masimum Index [mask]

Campute the zera-based index of the marimum value element in each
input channel [vector]. The number of input samples per channel must be
a multiple: of 16 and at least 48. The input may be any real zigned 16-bit
fixed-point data type. The output data type is a signed 32-bit integer.

Cancel | Help | Apply |

In simulation, the Vector Maximum Index block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxidx. During
code generation, this block calls the DSP_maxidx routine to produce
optimized code.

7-181

C64x Vector Maximum Value

Purpose

Library

Description

Tl Codx

MAKVAL
Wachor Maximum Value

Dialog
Box

Algorithm

See Also

7-182

¢

Maximum value for each input signal channel

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Maximum Value block returns the maximum value
in each channel (vector) of the input signal. The input can be any real,
16-bit, signed fixed-point data type. The number of samples on each
input channel must be an integer multiple of 8 and must be at least 32.
The output data type matches the input data type.

The Vector Maximum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Yector Maxinum Yalue x|

Wector Masimum Yalue [mask)

Campute the maximum value for each channel [vector] of the input signal.
The number of samples per channel must be at least 32, and an integer
multiple of eight. The input and output data type must match, and may be
any real signed 16-bit fized-point data type.

Cancel | Help | Apply |

In simulation, the Vector Maximum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_maxval. During
code generation, this block calls the DSP_maxval routine to produce
optimized code.

C64x Vector Minimum Value

C64x Vector Minimum Value

Purpose

Library

Description

Tl CEdx

E i
MINVAL
Vechor Minimum Value

Dialog
Box

Algorithm

See Also

Minimum value for each input signal channel

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Minimum Value block returns the minimum value in
each channel of the input signal. The input may be any real, 16-bit,
signed fixed-point data type. The number of samples on each input
channel must be an integer multiple of 4 and must be at least 20. The
output data type matches the input data type.

The Vector Minimum Value block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Yector Minimum \I'aluef =l

Wector Minimum Y alue [maszk)

Carpute the minirmnun walue far each channel [vectar] of the input zsignal.
The number of samples per channel must be greater than or equal to
twenty, and an integer multiple of four. The input and output data type
must match, and may be any real zsigned 1E-bit fired-point data type.

Cancel | Help | Apply |

In simulation, the Vector Minimum Value block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_minval. During
code generation, this block calls the DSP_minval routine to produce
optimized code.

C64x Vector Maximum Value

7-183

C64x Vector Multiply

Purpose

Library

Description

. ‘ T1 CB4x
¥

MUIL32

Vachor Multip by

Dialog
Box

Algorithm

See Also

7-184

Element-wise multiplication on inputs

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Multiply block performs element-wise 32-bit
multiplication of two inputs X and Y. The total number of elements in
each input must be a multiple or 8 and at least 16, and the inputs must
have matching dimensions. The upper 32 bits of the 64-bit accumulator
result are returned. All input and output elements are 32-bit signed
fixed-point data types.

The Vector Multiply block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Block Parameters: ¥ector Multiply x|

“ector Multiply [mazk)

Perform element-wize 32-bit multiplication on real inputs # and . The
upper 32 bitz of the G4-bit result are returned. The inputs must have
matching dimenzions. The total number of elements in each input must be
divishle by 8 and at least 16. Al input and output elements are signed
32-bit fixed-point data types,

Cancel | Help | Apply |

In simulation, the Vector Multiply block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_mul32. During
code generation, this block calls the DSP_mul32 routine to produce
optimized code.

C64x Matrix Multiply

C64x Vector Negate

Purpose

Library

Description

4

NEG32

Vachor Negate

Dialog
Box

Algorithm

Negate each input signal element

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Negate block negates each element of a 32-bit signed
fixed-point input signal. For real signals, the number of input elements
must be a multiple of four, and at least eight. For complex signals,

the number of input elements must be at least two. The output is the
same data type as the input.

The Vector Negate block supports both continuous and discrete sample
times. This block supports little-endian code generation only.

Block Parameters: Yector Negate =l

Vector Negate [mask)

Megate each element of a sighed 32-bit fixed-paint input signal. For real
zighalg, the number of input elements must a multiple of four and at least
eight. For complex signals, the number of input elements must be even
and at least four.

Cancel | Help | Apply |

In simulation, the Vector Negate block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_neg32. During
code generation, this block calls the DSP_neg32 routine to produce
optimized code.

7-185

C64x Vector Sum of Squares

Purpose

Library

Description

‘ JI Codx

i
VECSUMSD
Veclhor Sum ol Squams

Dialog
Box

Algorithm

7-186

Sum of squares over each real input channel

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”
on page 6-12

The C64x Vector Sum of Squares block computes the sum of squares
over each channel of a real input. The number of samples per input
channel must be divisible by 4; equal to or greater than 8; and the input
must be a 16-bit signed fixed-point data type. The output is a 32-bit
signed fixed-point scalar on each channel. The number of fractional bits
of the output is twice the number of fractional bits of the input.

The Vector Sum of Squares block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: ¥ector Sum of Squares x|

Wector Sum of Squares [mask)

Campute the sum of squares over each channel of a real input. The
number of zamples per channel must be a multiple of 4 and at least 12,
The input must be a signed 16-bit fixed-point data type. The output iz a
zighed 32-bit fised-point scalar on each channel.

Cancel | Help | Apply |

In simulation, the Vector Sum of Squares block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_vecsumsq.
During code generation, this block calls the DSP_vecsumsq routine to
produce optimized code.

C64x Weighted Vector Sum

Purpose

Library

Description

% JI Codx

v |
Y W_VEC
Wiaighted Vector Sum

Dialog
Box

Weighted sum of input vectors

“C64x DSP Library (tic64dsplib)” on page 6-11, “Math and Matrices”

on page 6-12

The C64x Weighted Vector Sum block computes the weighted sum of
two inputs, X and Y, according to (W*X)+Y. Inputs may be vectors or
frame-based matrices. The number of samples per channel must be a
multiple of eight. Inputs, weights, and output are Q.15 data types, and

weights must be in the range -1 <W < 1.

The Weighted Vector Sum block supports both continuous and discrete
sample times. This block supports little-endian code generation only.

Block Parameters: Weighted ¥ector Sum
—wieighted Wectar Sum [mask]

Find the weighted surm W* + % of twa input vectars. The number of
zamples per channel must be a multiple of ight. The weights, W, may be
supplied either through an input port or by entering directly into the mask
dialog. Input signals, weights, and output signals are all .15 data types.

r— Parameters

Weight source: ISR R

Weights W]
{05

ok I Cancel | Help | Apply

Weight source
Specify the source of the weights:

e Specify via dialog — Enter the weights in the Weights (W)

parameter in the dialog box

® Input port — Accept the weights from port W

7-187

C64x Weighted Vector Sum

Algorithm

7-188

Weights (W)
This parameter is visible only when Specify via dialogis
specified for the Weight source parameter. This parameter is
tunable in simulation. When the weights are

e All the same, you need only enter a scalar.

¢ Different within channels but the same across channels, enter
a vector containing the initial conditions for one channel. The
length of this vector must be a multiple of four.

¢ Different across channels, enter a matrix containing all initial
conditions. The number of rows of this matrix must be a
multiple of four, and the number of columns of this matrix
must be equal to the number of channels.

Weights must be in the range -1 < W < 1.

In simulation, the Weighted Vector Sum block is equivalent to the
TMS320C64x DSP Library assembly code function DSP_w_vec. During
code generation, this block calls the DSP_w_vec routine to produce
optimized code.

C6713 DSK ADC

Purpose
Library

Description

Line In
CGE713 DSK o
ALC

ADC

Digitized signal output from codec to processor
“C6713 DSK (c6713dsklib)” on page 6-4

Use the C6713 DSK ADC (analog-to-digital converter) block to capture
and digitize analog signals from external sources, such as signal
generators, frequency generators or audio devices. Placing an C6713
DSK ADC block in your Simulink block diagram lets you use the audio
coder-decoder module (codec) on the C6713 DSK to convert an analog
input signal to a digital signal for the digital signal processor.

Due to a hardware limitation, there can be only one C6713 DSK ADC
block per model. Using two blocks will generate an error message.

Most of the configuration options in the block affect the codec. However,
the Output data type, Samples per frame and Scaling options are
related to the model you are using in Simulink software, the signal
processor on the board, or direct memory access (DMA) on the board.
In the following table, you find each option listed with the C6713 DSK
hardware affected.

Option Affected Hardware

ADC source Codec

Mic Codec

Output data TMS320C6713 digital signal processor
type

Samples per Direct memory access functions
frame

Scaling TMS320C6713 digital signal processor

Source gain Codec

(dB)

You can select one of three input sources from the ADC source list:

7-189

C6713 DSK ADC

7-190

® Line In— the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

® Mic — the codec accepts input from the microphone connector (MIC
IN) on the board mounting bracket.

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels on input and output.

The block uses frame-based processing of inputs, buffering the input
data into frames at the specified samples per frame rate. In Simulink
software, the block puts monaural data into an N-element column
vector. Stereo data input forms an N-by-2 matrix with N data values
and two stereo channels (left and right).

When the samples per frame setting is more than one, each frame of
data is either the N-element vector (monaural input) or N-by-2 matrix
(stereo input). For monaural input, the elements in each frame form the
column vector of input audio data. In the stereo format, the frame is
the matrix of audio data represented by the matrix rows and columns
— the rows are the audio data samples and the columns are the left
and right audio channels.

When you select Mic for ADC source, you can select the +20 dB Mic
gain boost check box to add 20 dB to the microphone input signal
before the codec digitizes the signal.

Source gain (dB) lets you add gain to the input signal before the A/D
conversion. Select the appropriate gain from the list.

C6713 DSK ADC

Dialog
Box

L] source Block Parameters: ADC x|
~CE?1305K ADC (mask)

Configures the AIC23 codec and the TRMS320CE713 peripherals to output & stream
of data collected from the analog jacks on the C6713 DSP Starer Kit board.

During simulation, this block simply outputs zeras,

—FParameters

A TS -

[T +20 dB Mic gain hoost
¥ Stereo

Sampling rate (Hz): | 8 kHz

Ward length: | 16-bit

Outputdatalype:l Single

Lef Lef Lo Lo

Scaling:l Maormalize

Samples per frame:
|54

™ Inhetit sample time

(8] I Cancel Help

ADC source
The input source to the codec. Line In is the default setting.
Selecting Mic enables the +20 dB Mic gain boost option.

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
is applied before analog-to-digital conversion.

Stereo
Indicates whether the input audio data is in monaural or stereo
format. Select the check box to enable stereo input. Clear the

7-191

C6713 DSK ADC

See Also

7-192

check box when you input monaural data. By default, stereo
operation is enabled.

Sampling Rate
Set the sampling rate of the analog-to-digital converter.
Increasing the frequency increases the accuracy of the sampling
data over time.

Word length
Sets the resolution with which the ADC samples the analog input.
Increasing the word length increases the accuracy of the data in

each sample. If your model also contains a DAC block, set its
word length match that of the ADC block.

Output data type
Selects the word length and shape of the data from the codec.
By default, double is selected. Options are Double, Single, and
Integer.

Scaling
Selects whether the codec data is unmodified, or normalized to the
output range to +1.0, based on the codec data format. Select either
Normalize or Integer Value. Normalize is the default setting.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal the block
buffers internally before it sends the digitized signals, as a frame
vector, to the next block in the model. This value defaults to 64
samples per frame. Notice that the frame rate depends on the
sample rate and frame size. For example, if your input is 8kHz
samples per second, and you select 64 samples per frame, the
frame rate is 125 frames every second. The throughput remains
the same at 64 samples per second.

C6713 DSK DAC

C6713 DSK DAC

Purpose
Library

Description

CE713 DSK
DAC

DAcH

Configure codec to convert digital input to analog output
“C6713 DSK (c6713dsklib)” on page 6-4

Adding the C6713 DSK DAC (digital-to-analog converter) block to your
Simulink model lets you connect an analog signal to the analog output
jack on the C6713 DSK. When you add the C6713 DSK DAC block, the
digital signal received by the codec is converted to an analog signal
and sent to the output jack.

The input on the C6713DSK DAC block takes [Nx1] and [Nx2] signals.
The AIC23 audio codec on the C6713DSK board always outputs stereo
samples, even though it accepts both mono [Nx1] and stereo [Nx2]
signals. If the input is a mono signal with dimension [Nx1], the block
outputs the same signal on both the left and right channels. If the input
is a stereo signal with dimension [Nx2], each of the N samples are
output separately through the left and right channels.

Only the Word length option in the block affects the codec. The other
options relate to the model you are using in Simulink software and
the signal processor on the board. Refer to the following table for
information.

Option Affected Hardware

Overflow mode | TMS320C6713 Digital Signal Processor
Scaling TMS320C6713 Digital Signal Processor
Word length Codec

7-193

C6713 DSK DAC

Dialog
Box

See Also

7-194

L] sink Block Param
—CE71 305K DAC (mask)

Configqures the AIC23 codec and the ThM5320CE713 peripherals to
send a stream of data to the output jack on the C6713 DSP Starter Kit
board.

—Farameters

ward length:| 16-bit

sampling rate (Hz):l 8 kHz

Scaling:l Mormalize

(B3 [E3 15 1B

Crverflow dee:IWrap

ok I Cancel Help | Al |

Word length
Sets the DAC to interpret the input data word length. Without
this setting, the DAC cannot convert the digital data to analog
correctly. The value defaults to 16 bits, with options of 20, 24, and
32 bits. Select the word length to match the ADC setting.

Scaling
Selects whether the input to the codec represents unmodified data,
or data that has been normalized to the range +£1.0. Matching the
setting for the C6713 DSK ADC block is appropriate here.

Overflow mode
Determines how the codec responds to data that is outside the
range specified by the Scaling parameter. You can choose Wrap
or Saturate options to apply to the result of an overflow in an
operation. Saturation is the less efficient operating mode if
efficiency is important to your development.

C6713 DSK ADC

C6713 DSK DIP Switch

Purpose
Library

Description

Ca713 DSK
DIP Swilch

Switch

Simulate or read DIP switches
“C6713 DSK (c6713dsklib)” on page 6-4

Added to your model, this block behaves differently in simulation than
in code generation and targeting.

In Simulation — the options Switch 0, Switch 1, Switch 2, and
Switch 3 generate output to simulate the settings of the user-defined
dual inline pin (DIP) switches on your C6713 DSK. Each option turns
the associated DIP switch on when you select it. The switches are
independent of one another.

By defining the switches to represent actions on your target, DIP
switches let you modify the operation of your process by reconfiguring
the switch settings.

Use the Data type to specify whether the DIP switch options output an
integer or a logical string of bits to represent the status of the switches.
The table that follows presents all the option setting combinations with
the result of your Data type selection.

Option Settings to Simulate the User DIP Switches on the
C6713 DSK

Switch 0 Switch 3 | Boolean | Integer
(LSB) Switch 1 | Switch 2 | (MSB) Output | Output
Cleared Cleared Cleared Cleared 0000 0

Selected | Cleared Cleared Cleared 0001
Cleared Selected | Cleared Cleared 0010
Selected | Selected | Cleared Cleared 0011
Cleared Cleared Selected | Cleared 0100
Selected | Cleared Selected | Cleared 0101
Cleared Selected | Selected | Cleared 0110

| O | WD

7-195

C6713 DSK DIP Switch

Option Settings to Simulate the User DIP Switches on the C6713
DSK (Continued)

Switch 0 Switch 3 | Boolean | Integer
(LSB) Switch 1 | Switch 2 | (MSB) Output | Output
Selected | Selected | Selected | Cleared 0111 7
Cleared Cleared Cleared Selected | 1000 8
Selected | Cleared Cleared Selected | 1001 9
Cleared Selected | Cleared Selected | 1010 10
Selected | Selected | Cleared Selected | 1011 11
Cleared Cleared Selected | Selected | 1100 12
Selected | Cleared Selected | Selected | 1101 13
Cleared Selected | Selected | Selected | 1110 14
Selected | Selected | Selected | Selected | 1111 15

Selecting the Integer data type results in the switch settings
generating integers in the range from 0 to 15 (uint8), corresponding to
converting the string of individual switch settings to a decimal value. In
the Boolean data type, the output string presents the separate switch
setting for each switch, with the Switch 0 status represented by the
least significant bit (LSB) and the status of Switch 3 represented by
the most significant bit (MSB).

In Code generation and targeting — the code generated by the block
reads the physical switch settings of the user switches on the board and
reports them as shown above. Your process uses the result in the same
way whether in simulation or in code generation. In code generation
and when running your application, the block code ignores the settings
for Switch 0, Switch 1, Switch 2 and Switch 3 in favor of reading
the hardware switch settings. When the block reads the DIP switches,
it reports the results as either a Boolean string or an integer value

as the table below shows.

7-196

C6713 DSK DIP Switch

Output Values From The User DIP Switches on the C6713 DSK

Switch 0 Switch 3 | Boolean | Integer
(LSB) Switch 1 | Switch 2 | (MSB) Output | Output
Off Off Off Off 0000 0

On Off Off Off 0001 1

Off On Off Off 0010 2

On On Off Off 0011 3

Off Off On Off 0100 4

On Off On Off 0101 5

Off On On Off 0110 6

On On On Off 0111 7

Off Off Off On 1000 8

On Off Off On 1001 9

Off On Off On 1010 10

On On Off On 1011 11

Off Off On On 1100 12

On Off On On 1101 13

Off On On On 1110 14

On On On On 1111 15

7-197

C6713 DSK DIP Switch

Dialog
Box

7-198

Block Parameters: Switch x|
—CEF13 DSK DIP Switch [mask)

Outputs state of uzer switches located on C6713 DSK board. In Boolean
mode, outputs & vector of 4 boolean values, with the least-significant bit

[LSB] firzt. In Integer mode, outputs aninteger from O to 7. Faor simulation,
checkbores in the block dialog are uzed in place of the physical zwitches,

T
[Switch 1
[~ Switch 2

[~ Switch 3 [MSE]

Data type: IBDD|BEII"I j

Sample time:;

|1.c|

0k, I Cancel Help |

Opening this dialog box causes a running simulation to pause. Refer to
“Changing Source Block Parameters During Simulation” in your online
Simulink documentation for details.

Switch 0
Simulate the status of the user-defined DIP switch on the board.

Switch 1
Simulate the status of the user-defined DIP switch on the board.

Switch 2
Simulate the status of the user-defined DIP switch on the board.

Switch 3
Simulate the status of the user-defined DIP switch on the board.

C6713 DSK DIP Switch

Data type
Determines how the block reports the status of the user-defined
DIP switches. Boolean is the default, indicating that the output is
a vector of four logical values, either O or 1.

Each vector element represents the status of one DIP switch; the
first switch 1s switch Switch 0 and the fourth is switch Switch 3.
The data type Integer converts the logical string to an equivalent
unsigned 8-bit (uint8) value. For example, when the logical string
generated by the switches is 0101, the conversion yields 5 — the
LSB is 1 and the MSB is 0.

Sample time
Specifies the time between samples of the signal. This value
defaults to 1 second between samples, for a sample rate of one
sample per second (1/Sample time).

7-199

C6713 DSK LED

Purpose

Library

Description

Ca713 DSK
LED

LED

Dialog
Box

7-200

Control LEDs
“C6713 DSK (c6713dsklib)” on page 6-4

Adding the C6713 DSK LED block to your Simulink block diagram
lets you trigger all four of the user light emitting diodes (LED) on the
C6713 DSK. To use the block, send a nonzero real scalar to the block.
The C6713 DSK LED block controls all four User LEDs located on the
C6713 DSK.

When you add this block to a model, and send a real scalar to the block
input, the block sets the LED state based on the input value it receives:

¢ When the block receives an input value equal to 0, the specified LEDs
are turned off (disabled), 0000

¢ When the block receives a nonzero input value, the specified LEDs
are turned on (enabled), 0001 to 1111

To activate the block, send it an integer in the range 0 to 15. Vectors
do not work to activate LEDs; nor do complex numbers as scalars or
vectors.

All LEDs maintain their state until they receive an input value that
changes the state. Enabled LEDs stay on until the block receives an
input value that turns the LEDs off; disabled LEDs stays off until
turned on. Resetting the C6713 DSK turns off all User LEDs. By
default, the LEDs are turned off when you start an application.

Block Parameters: LED E x|
CEF1305EK LED [mazk]

Controlz the Uszer LEDz an the CE71305E. during execution of generated
code. The input muzt be an integer between 0 and 15, and the binary
equivalent of that value will be reflected on the four uger LED =,

Cancel Help Spply

C6713 DSK LED

This dialog box does not have any user-selectable options.

7-201

C6713 DSK Reset

Purpose
Library

Description

Resat
CGE713 DSK

Resat

Dialog
Box

7-202

Reset to initial conditions
“C6713 DSK (c6713dsklib)” on page 6-4

Double-clicking this block in a Simulink model window resets the C6713
DSK that is running the executable code built from the model. When
you double-click the Reset block, the block runs the software reset
function provided by CCS IDE that resets the processor on your C6713
DSK. Applications running on the board stop and the signal processor
returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to any
block in the model. When you double-click this block in the block library
it resets your C6713 DSK. In other words, anytime you double-click a
C6713 DSK Reset block you reset your C6713 DSK.

This block does not have settable options and does not provide a user
interface dialog box.

C6000 CPU Timer

Purpose
Library

Description

Dialog
Box

Select timer and configure periodic interrupt
“Scheduling (c6000dspcorelib)” on page 6-14

Configures the CPU timer period on your board. The timer

raises periodic interrupts when the timer counter reaches the timer
period. While the block provides two timers, 0 and 1, some CPU’s have
more or fewer than two timers. For example, the DM642 provides
three timers. If you set Timer no to 1, verify that your CPU has two
or more timers.

The C6000 CPU Timer block does not support C64x processors.

E! Block Parameters: CPU Timer il
—CR000 Tirmer (mask)
—Parameters

Timer no; R -

Timer period:

o

QK I Cancel Help Apply
Timer no.

Select the timer to use from the list. Verify that the target offers
a timer with the timer number you choose. Timer 0 is selected
by default.

Timer period
Set the timer interrupt period in terms of CPU clock cycles.

Enter the timer period in clock cycles, either as an integer,
fraction, decimal, or a variable in your workspace. 0 is the default
value.

7-203

C6000 CPU Timer

For example, to generate a periodic timer interrupt every second
when the CPU clock operates at 720MHz, set Timer period to
720e6 clock cycles.

See Also C5000/C6000 Hardware Interrupt, Idle Task

7-204

CAN Pack

Purpose

Library

Description

Pack individual signals into CAN message

CAN Communication

Data

IMessage: CAN NMsg CAN Msg

Standard |D: 250

CAN Padk
[With raw data input)

Signall

Signal2 pzcage: CAN Msg CAN M
Signaly Standsrd ID:250 8

Signal4

CAN Padk
[With manuslly specified data input)

DriverDoorLodk

File: demoVNT_CANdbFiles.dbc
Message: DoorControlMsg CAN Msg

Standard 1D0: 250

FPassengerDoorLodk

(With CANdb specified data input)

CAN Padk

The CAN Pack block loads signal data into a message at specified
intervals during the simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of input
ports is dynamic and depends on the number of signals you specify

for the block. For example, if your block has four signals, it has four
input ports.

Signali
Signal2

Signal3

Signald

hlessage: CAN Msg
Standard ID: 250 CAM Msgp

This block has one output port, CAN Msg. The CAN Pack block takes

CAN Fack

the specified input parameters and packs the signals into a message.

Other Supported Features
The CAN Pack block supports:

7-205

CAN Pack

® The use of Simulink® Accelerator™ mode. Using this feature, you can
speed up the execution of Simulink models.

® The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

® Code generation using Real-Time Workshop to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

Dialog Use the Function Block Parameters dialog box to select your CAN Pack
Box block parameters.

=] Function Block Parameters: CAN Pack x|

—CAN Pack

Pack data into a CAN Message.

—Parameters

Data s input as: -
CANdb file: I Erowse. .. |
Message list: I(none} LI

—Message

MName: IC.-'-\N Msg

Identifier type: IStandard (11-bit identifier) j
Identifier: I 250

Length (bytes): IB

OK. I Cancel Help Apply

7-206

CAN Pack

Parameters

Data is input as
Select your data signal:

e raw data: Input data as a uint8 vector array. If you select this
option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
input port on your block.

¢ manually specified signals: Allows you to specify data signal
definitions. If you select this option, use the Signals table to
create your signals. The number of input ports on your block
depends on the number of signals you specify.

7-207

CAN Pack

x
—CAN Pack:
Pack data into a CAN Message,
—Parameters
Data is input as: |manually specified signals ;I
CANdb file: I Browse... |
Message list: I(none} LI
Messag
MName: |CAN Msg
Identifier type: |Standard {11-bit identifier) LI
Identifier: I 250
Length (bytes): IB
Signals: Add signal Delete signal |
Name Ei‘frt EiE}m E:’;:r E:D‘:' :‘;:E"'e" T;'L:’:"e" Factor |Offset |Min |Max
Signall 1] B|LE = |[signed LI Standard | o] 1 0| -Inf| Inf
Signal2 8 8|Le >llsigned x||standard x| 0 1 0| -Inf| Inf
Signal3 16 8le w|jsigned x|lstandard ~] 0 1 0| Anf| Inf
Signal4| 24 8l wllsigned +|standard | 0 1 0| Inf| Inf
oK I Cancel | Help | Apply |

¢ CANdb specified signals: Allows you to specify a CAN

database file that contains message and signal definitions.

If

you select this option, select a CANdb file. The number of input
ports on your block depends on the number of signals specified
in the CANdD file for the selected message.

7-208

CAN Pack

[Function Block Parameters: CAN Pack (With CANdb s

x|
—CAN Pack:
Pack data into a CAN Message,
—Parameters
Data is input as: |CANdb specified signals ;I
CANdb file: ICANdeiIes.dbc Browse... |
Message list: IDDDrConh’oIMsg LI
Messag:
MName: | DoorControlMsg
Identifier type: |Standard {11-bitidentifier) LI
Identifier: |4DD
Length (bytes): |8
Signals: Add signal Delete signal |
Name Ei‘frt E’E}m E:’;:r E::: ’;ﬂ:de“ T;'L:’:"e" Factor |Offset |Min |Max
DriverD 1 1LE = |junsigned LI Standard x| 1] 1
Passen; 0 1JLE ¥ Jjunsigned jlstandard hd 0 1
oK I Cancel | Help Apply

CANdb file

This option is available if you specify that your data is input via
a CANdb file in the Data is input as list. Click Browse to find

the appropriate CANdb file on your system. The message list

specified in the CANdDb file populates the Message section of the

dialog box. The CANdb file also populates the Signals table for

the selected message.

Message list

This option is available if you specify that your data is input via a

CAN(db file in the Data is input as field and you select a CANdb
file in the CANdD file field. Select the message to display signal

details in the Signals table.

7-209

CAN Pack

Message

Name
Specify a name for your CAN message. The default is CAN
Msg. This option is available if you choose to input raw data or
manually specify signals. This option in unavailable if you choose
to use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option 1s available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the
Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive
integer from O through 2047 for a standard identifier and from
0 through 536870911 for an extended identifier. You can also
specify hexadecimal values using the hex2dec function. This
option is available if you choose to input raw data or manually
specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your data input, the
CAN(db file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdDb file.

If you are using a CANdDb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

7-210

CAN Pack

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message data. The
start bit must be an integer from O through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

e | E: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

7-211

CAN Pack

7-212

Bit Number

Bit 7

Bit6

Bit5

Bit 4

Bit3

Bit 2

Bit1l

Bit 0

Byte 0

Data Byte Number

15

3l

14

a0

13

23

12

Data be

qgins at the least si

gnificant

11

10

Byte 3 bit and starts at 20

a9 as a7 a6 s 34 a3 3z

Data is writen up to the most significant

Byte 4 bit and ends at 27

47 a6 45 44 43 42 41 40
Byte §

55 54 53 52 51 50 43 43
Byte 6

63 62 &1 60 59 58 57 56
Byte 7

Little Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

BE: Where byte order is in big-endian format (Motorola®). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

CAN Pack

Bit Number
Bit7 Bité Bit5 Bitd| Bit3| Bit2| Bitl| Bit0

Data Byte Number

13 17
Data iswriten up to the most
significant bit and ends at |11

31 a0 29 27 26 5 24
Data begins at the least significant

Byte 3 it and starts at 20

a9 L a7 a6 as 34 a3 az
Byte 4

47 a6 45 44 43 42 41 40
Byte §

55 54 53 52 51 50 43 43
Byte 6

63 62 61 &0 59 58 57 56
Byte 7

Big Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

® signed (default)
® unsigned

® single

® double

7-213

CAN Pack

Multiplex type
Specify how the block packs the signals into the CAN message
at each timestep:

e Standard: The signal is always packed at each timestep.

® Multiplexor: The Multiplexor signal, or the mode signal is
always packed. You can specify only one Multiplexor signal
per message.

e Multiplexed: The signal is packed if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, a message has four signals with the following types

and values.
Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example

¢ The block packs Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

e [f the value of Signal-D is 1 at a particular timestep, then the
block packs Signal-B along with Signal-A and Signal-D in that
timestep.

e [f the value of Signal-D is 0 at a particular timestep, then the
block packs Signal-C along with Signal-A and Signal-D in that
timestep.

e [f the value of Signal-D is not 1 or 0, the block does not pack
either of the Multiplexed signals in that timestep.

7-214

CAN Pack

Multiplex value

This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. The Multiplex value must be a positive
integer or zero.

Factor

Specify the Factor value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 7-215 to understand how physical
values are converted to raw values packed into a message.

Offset

Min

Max

Specify the Offset value to apply to convert the physical value
(signal value) to the raw value packed in the message. See
“Conversion Formula” on page 7-215 to understand how physical
values are converted to raw values packed into a message.

Specify the minimum physical value of the signal. The default
value is -inf (negative infinity). You can specify any number for
the minimum value. See “Conversion Formula” on page 7-215
to understand how physical values are converted to raw values
packed into a message.

Specify the maximum physical value of the signal. The default
value is inf. You can specify any number for the maximum
value. See “Conversion Formula” on page 7-215 to understand
how physical values are converted to raw values packed into a
message.

Conversion Formula

The conversion formula is

raw_value = (physical_value - Offset) / Factor

7-215

CAN Pack

where physical value is the value of the signal after it is saturated
using the specified Min and Max values. raw_value is the packed
signal value.

See Also CAN Unpack

7-216

CAN Unpack

Purpose Unpack individual signals from CAN messages
. . .
lerclry CAN Communication
L L
Description
Signal1
DriverDoorLod
u AN M A Signalz File: demoVNT_CANdbFiles.dbc
CAN MegtiEssage: TAN Msg ~AN M Message: CAN Msg -
CAN Msg Standard ID: 250 Data CAN Mg Standard 10: 250 . CAN Msg Message: DoorControlMsg
Signal2 Standsrd 1D: 250
PassengerDoorlodk
Signal4
CAN Unpadk

(With raw data cutput)

CAN Unpade

CAN U ot
(With manuslly specified data output) nps

(With CANdE specified data cutput)

The CAN Unpack block unpacks a CAN message into signal data using
the specified output parameters at every timestep. Data is output as
individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number
of output ports is dynamic and depends on the number of signals you
specify for the block to output. For example, if your block has four
signals, it has four output ports.

Signali

Meszage: CAN hisg Signalz

CAN M
" Standard I0:280 gignaiz

Signald

CAMN Unpack

Other Supported Features
The CAN Unpack block supports:

7-217

CAN Unpack

® The use of Simulink Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

® The use of model referencing. Using this feature, your model can
include other Simulink models as modular components.

® Code generation using Real-Time Workshop to deploy models to
targets.

Note Code generation is not supported if your signal information
consists of signed or unsigned integers greater than 32-bits long.

For more information on these features, see the Simulink
documentation.

7-218

CAN Unpack

Dialog
Box

Use the Function Block Parameters dialog box to select your CAN
message unpacking parameters.

E! Function Block Parameters: CAN Unpack (With raw dz 5'

—CAM Unpack

Unpack data from a CAM Message.

—Parameters
Data to be output as: ©
CANdb file: I Browse... |
Message list: |(none} LI
—Message
Mame: |CAN Msg
Identifier type: |Standard (11-bit identifier) ;I
Identifier: I 250

Length (bytes): I 8

—Output ports
[~ output identifier [~ Cutput tmestamp [~ Cutput error
[output remate [~ output length ™ output status
CK I Cancel Help Apply
Parameters

Data to be output as
Select your data signal:

* raw data: Output data as a uint8 vector array. If you select
this option, you only specify the message fields. All other signal
parameter fields are unavailable. This option opens only one
output port on your block.

e manually specified signals: Allows you to specify data
signals. If you select this option, use the Signals table to
create your signals message manually.

7-219

CAN Unpack

7-220

E! Function Block Parameters: CAN Unpack (With manually specified data output)

—CAM Unpack-

Unpack data from a CAN Message.

—Parameters

Data to be output as:

CANdb file: I Browse... |

Message list: I(none} LI
Messag
Mame: ICAN Msg
Identifier type: IStandard (11-bit identifier) j
Identifier: I 250

Length (bytes): I 8

Signals: Add signal Delete signal |
Start [Length |Byte |Data Multiplex Multiplex X
Name bit (bits) order value Factor |Offset |Min |Max
Signall 1] B|LE | |[signed LI Standard | o] 1 0| -Inf| Inf
Signal2 8 B|LE | |[signed LIIStandard hd o] 1 0| -Inf| Inf
Signal3 16 8|Le =llsianed =|jstandard =] 0 1 0| Inf| Inf
Signald| 24 8jle w|jsigned x|lstandard ~| 0 1 0| dnf| Inf
—Output ports

™ output identifier [~ Output timestamp ™ output error
™ Output remote ™ Output length ™ Output status

oK I Cancel | Help | Apply

The number of output ports on your block depends on the
number of signals you specify. For example, if you specify four
signals, your block has four output ports.

CANdb specified signals: Allows you to specify a CAN
database file that contains data signals. If you select this
option, select a CANdD file.

CAN Unpack

E! Function Block Parameters: CAN Unpack (With CANdD specified data output) 5[

—CAM Unpack:

Unpack data from a CAN Message.

—Parameters

Data to be output as: |(d

CANdb file: I CANdbFiles.dbc Browse... |

Message list: IDDDrConh’oIMsg LI
Messag
Name: I DoorControlMsg
Identifier type: IStandard {11-bitidentifier) j
Identifier: |4DD
Length (bytes): |8
Signals: Add signal Delete signal |
Name Ei‘frt E’E}m E:’;:r E;:E ’t“';]‘:::p'e“ T;'L:’:"e" Factor |Offset |Min |Max
DriverD 1 LLE = |junsigned LI Standard x| 1] 1 1] 1] 1
Passen; 1] LLE = |junsigned jlstandard hd 1] 1 1] 1] 1
—Output ports

[T output identifier [~ Output timestamp [~ output error
™ Output remote ™ Output length ™ Output status

oK I Cancel | Help | Apply |

The number of output ports on your block depends on the
number of signals specified in the CANdb file. For example, if
the selected message in the CANdb file has four signals, your
block has four output ports.

CANdb file
This option 1s available if you specify that your data is input via a
CAN(db file in the Data to be output as list. Click Browse to
find the appropriate CANdb file on your system. The messages
and signal definitions specified in the CANdDb file populate the

7-221

CAN Unpack

Message section of the dialog box. The signals specified in the
CAN(db file populate Signals table.

Message list
This option is available if you specify that your data is to be
output as a CANdD file in the Data to be output as list and you
select a CANdb file in the CANdDb file field. You can select the
message that you want to view. The Signals table then displays
the details of the selected message.

Message

Name
Specify a name for your CAN message. The default is CAN Msg.
This option is available if you choose to output raw data or
manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an
Extended type. The default is Standard. A standard identifier
is an 11-bit identifier and an extended identifier is a 29-bit
identifier. This option is available if you choose to output raw
data or manually specify signals. For CANdb-specified signals,
the Identifier type inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer
from O through 2047 for a standard identifier and from 0 through
536870911 for an extended identifier. If you specify 1, the
block unpacks all messages that match the length specified for
the message. You can also specify hexadecimal values using the
hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you
are using CANdb specified signals for your output data, the
CAN(db file defines the length of your message. If not, this field

7-222

CAN Unpack

defaults to 8. This option is available if you choose to output raw
data or manually specify signals.

Signals Table

This table appears if you choose to specify signals manually or define
signals using a CANdDb file.

If you are using a CANdDb file, the data in the file populates this table
automatically and you cannot edit any fields. To edit signal information,
switch to manually specified signals.

If you have selected to specify signals manually, create your signals
manually in this table. Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block
in your model displays this name. The default is Signal [row
number].

Start bit
Specify the start bit of the data. The start bit is the least
significant bit counted from the start of the message. The start
bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The
length must be an integer from 1 through 64.

Byte order
Select either of the following options:

¢ LE: Where the byte order is in little-endian format (Intel). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit, which has the
highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table
resembles this figure.

7-223

CAN Unpack

Bit Number

E Bit7| Bité| Bit5 Bit4 Bita Bit2 Bitl Bit0
£

=

=

ﬂ_,’ T [] 4 3 2 1 u]
>

0O Byte 0

E 15 14 13 12 11 10 9 a8
]

a

31 a0 29
Data begins at the least significant

Byte 3 bit and starts at 20

a9 as a7 a6 s 34 a3 3z

Data is writen up to the most significant

Byte 4 bit and ends at 27

47 a6 45 44 43 42 41 40
Byte §

55 54 53 52 51 50 43 43
Byte 6

63 62 &1 &0 59 58 57 56
Byte 7

Little Endian Byte Order Counted from the Least Significant Bit
to the Highest Address

® BE: Where the byte order is in big-endian format (Motorola). In
this format you count bits from the start, which is the least
significant bit, to the most significant bit. For example, if you
pack one byte of data in big-endian format, with the start bit at
20, the data bit table resembles this figure.

7-224

CAN Unpack

Bit Number
Bit7 Bité Bit5 Bitd| Bit3| Bit2| Bitl| Bit0

Data Byte Number

13 17
Data iswriten up to the most
significant bit and ends at |11

31 a0 29 27 26 5 24
Data begins at the least significant

Byte 3 it and starts at 20

a9 L a7 a6 as 34 a3 az
Byte 4

47 a6 45 44 43 42 41 40
Byte §

55 54 53 52 51 50 43 43
Byte 6

63 62 61 &0 59 58 57 56
Byte 7

Big Endian Byte Order Counted from the Least Significant Bit
to the Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits.
Choose from:

e signed (default)
® unsigned

e single

® double

7-225

CAN Unpack

Multiplex type
Specify how the block unpacks the signals from the CAN message
at each timestep:

e Standard: The signal is always unpacked at each timestep.

® Multiplexor: The Multiplexor signal, or the mode signal is
always unpacked. You can specify only one Multiplexor signal
per message.

e Multiplexed: The signal is unpacked if the value of the
Multiplexor signal (mode signal) at run time matches the
configured Multiplex value of this signal.

For example, if a message has four signals with the following

values.
Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example

® The block unpacks Signal-A (Standard signal) and Signal-D
(Multiplexor signal) in every timestep.

e [f the value of Signal-D is 1 at a particular timestep, then the
block unpacks Signal-B along with Signal-A and Signal-D in
that timestep.

e [f the value of Signal-D is 0 at a particular timestep, then the
block unpacks Signal-C along with Signal-A and Signal-D in
that timestep.

e [f the value of Signal-D is not 1 or 0, the block does not unpack
either of the Multiplexed signals in that timestep.

7-226

CAN Unpack

Multiplex value

This option is available only if you have selected the Multiplex
type to be Multiplexed. The value you provide here must match
the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. The Multiplex value must be a positive
integer or zero.

Factor

Specify the Factor value applied to convert the unpacked raw
value to the physical value (signal value). See “Conversion
Formula” on page 7-228 to understand how unpacked raw values
are converted to physical values.

Offset

Min

Max

Specify the Offset value applied to convert the physical value
(signal value) to the unpacked raw value. See “Conversion
Formula” on page 7-228 to understand how unpacked raw values
are converted to physical values.

Specify the minimum raw value of the signal. The default value
is -inf (negative infinity). You can specify any number for the
minimum value. See “Conversion Formula” on page 7-228 to
understand how unpacked raw values are converted to physical
values.

Specify the maximum raw value of the signal. The default value
is inf. You can specify any number for the maximum value. See
“Conversion Formula” on page 7-228 to understand how unpacked
raw values are converted to physical values.

Output Ports

Selecting an Output ports option adds an output port to your block.

Output identifier

Select this option to output a CAN message identifier. The data
type of this port is uint32.

7-227

CAN Unpack

Output remote
Select this option to output the message remote frame status.
This option adds a new output port to the block. The data type of
this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option
adds a new output port to the block. The data type of this port
is double.

Output length
Select this option to output the length of the message in bytes.
This option adds a new output port to the block. The data type of
this port is uint8.

Output error
Select this option to output the message error status. This option
adds a new output port to the block. The data type of this port is
uint8.

Output status
Select this option to output the message received status. The
status 1s 1 if the block receives new message and 0 if it does not.
This option adds a new output port to the block. The data type of
this port is uint8.

If you do not select any Output ports option, the number of output
ports on your block depends on the number of signals you specify.

Conversion Formula

The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value. physical value is the
scaled signal value which is saturated using the specified Min and
Max values.

See Also CAN Pack

7-228

DM642 EVM Audio ADC

Purpose
Library

Description

Line In
OME842 EVM |

ADC

Audio ADC

Audio codec and peripherals
“DM642 EVM (dm642evmlib)” on page 6-6

Use the DM642 EVM ADC (analog-to-digital converter) block to capture
and digitize analog audio signals from external sources, such as signal
generators, frequency generators, or audio devices. Placing a DM642
EVM ADC block in your Simulink block diagram lets you use the audio
coder-decoder module (codec) on the DM642 EVM to convert an analog
input signal to a digital signal for the digital signal processor.

ADC blocks output int16 data independent of the data type you provide
as input to the block.

Most of the configuration options in the block affect the codec. However,
the Samples per frame and Scaling options are related to the model
you are using in Simulink software, the signal processor on the board,
or direct memory access (DMA) on the board. In the following table, you
find each option listed with the DM642 EVM hardware affected.

Option Affected Hardware
ADC Source Codec
Mic Codec

Sample rate (Hz) Codec

Samples per frame | Direct memory access functions

Stereo Codec

You can select one of two input sources from the ADC source list:

® Line In — the codec accepts input from the line in connector (LINE
IN) on the board’s mounting bracket.

® Mic in — the codec accepts input from the microphone connector
(MIC IN) on the board mounting bracket.

7-229

DM642 EVM Audio ADC

Dialog
Box

7-230

Use the Stereo check box to indicate whether the audio input is
monaural or stereo. Clear the check box to choose monaural audio
input. Select the check box to enable stereo audio input. Monaural
(mono) input is left channel only, but the output sends left channel
content to both the left and right output channels; stereo uses the left
and right channels.

You must set the sample rate for the block. From Sample rate (Hz),
select the sample rate for your model. Sample rate (Hz) specifies the
number of times each second that the codec samples the input signal.
Sample rates range from 8 kHz to 96 kHz, in preset rates. You must
select from the list; you cannot enter a sample rate that is not on the list.

iZ] source Block Parameters: Audio ADC il
~DE4ZEYI ADC (mask)

Configures the AIC23 codec and the Th33200ME4Z perpherals to output 2
stream of data collected fram the analog jacks on the DiB42 Evaluation Module.

During simulation. this block simply autputs zeros.

—Farameters

N R
[T +20 dB Mic gain boost
¥ Steren

sample rate: I 8 kHz j

Samples per frame:
|54

[Inherit sample time:

(8] I Cancel | Help |

ADC source
The input source to the codec. Line In is the default.

DM642 EVM Audio ADC

+20 dB Mic gain boost
Boosts the input signal by +20dB when ADC source is Mic. Gain
1s applied before analog-to-digital conversion.

Stereo
The number of channels input to the A/D converter. Clearing this
option selects the left channel; selecting this option selects both
left and right input channels. To configure the DM642 EVM board
for monaural operation, clear the Stereo check box. When you
first open the dialog box, Stereo is selected. This value defaults
to stereo operation.

Sample rate (Hz)
Sampling rate of the A/D converter. Available sample rates are
set by the codec. Default rate 1s 8 kHz. Options range up to 96
kHz. Select the sample rate from the list.

Samples per frame
Creates frame-based outputs from sample-based inputs. This
parameter specifies the number of samples of the signal buffered
internally by the block before it sends the digitized signals, as a
frame vector, to the next block in the model. This value defaults
to 64 samples per frame. Notice that the frame rate depends
on the sample rate and frame size. For example, if your input
1s 32 samples per second, and you select 64 samples per frame,
the frame rate is one frame every two seconds. The throughput
remains the same at 32 samples per second.

Inherit sample time
Selects whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. You must select this option to use the block in a
function subsystem with the asynchronous scheduler.

See Also DM642 EVM Audio DAC

7-231

DM642 EVM Audio DAC

Purpose

Library

Description

7-232

DME42 EVM

DAC

Audic DAC

Configure codec to convert digital audio input to analog audio output
“DM642 EVM (dm642evmlib)” on page 6-6

Adding the DM642 EVM DAC (digital-to-analog converter) block to
your Simulink model lets you output an analog signal to the LINE OUT
connection on the DM642 EVM mounting bracket. When you add the
DM642 EVM DAC block, the digital signal received by the codec is
converted to an analog signal (digital-to-analog conversion) and sent

to the output audio jack.

The DAC data word length is 16 bits. The block converts all input data
to int16 before it writes the data out to the DAC output buffer.

With an integer data word length of 16 bits, any data value above 215-1
or below -2!5 wraps back into the representable range of values between
-21% to 21%-1. Wrapping uses modulo arithmetic to cast an overflow back
into the representable range of the data type. For more information
about wrapping, refer to “Modulo Arithmetic”. Saturate arithmetic is
not available. For example,

While converting the digital signal to an analog signal, the codec rounds
floating point data to the nearest integer, thus rounding 0.51 up to 1.0
or 4.49 down to 4.0.

Setting the sample rate configures the codec sampling rate for the
analog output data stream. The rates range from 8000 Hz, similar to
plain old telephone service quality, to 48 kHz (CD quality audio) to
96 kHz.

DM642 EVM Audio DAC

DIOIOg 5] sink Block Parameters: Audio DAC X|

Box ~ DMB42EYM DAC (mask)

Configqures the AIC23 codec and the TM33200MB42 peripherals to
send a stream of data to the output jack on the DME42 DSP
Evaluation Module.

—Farameters

Sample rate:l 8 kHz j

OK I Cancel Help | Apply |

Sample rate (Hz)
Sampling rate of the D/A converter. Available output sample
rates are set by the codec. Default rate is 8000 Hz (8 kHz) and
the maximum rate is 96000 Hz (96 kHz). Choose the appropriate

rate from the list.

See Also DM642 EVM Audio ADC

7-233

DM642 EVM FPGA GPIO Read

Purpose

Library

Description

D MESZEW A

(000014143
FPGA GPIO Read

7-234

Read

User GPIO registers to read from selected pins
“DM642 EVM (dm642evmlib)” on page 6-6

Added to your model, this block reads logical values from the GPIO
registers you select in the dialog box and sends the data out to
downstream blocks as an unsigned 8-bit word.

The DM642 EVM offers eight general purpose 1/0 registers that you can
read from and write to for your needs. Each I/O pin represents either a
logical 0 or 1 depending on the signal at the pin.

An important note — you cannot read and write to the same 1/0
registers with the FPGA GPIO Read and FPGA GPIO Write blocks. If
you read register 1 with the read block you cannot write to register 1
with the write block. This applies to all eight registers.

DM642 EVM FPGA GPIO Read

DIOIOg E! Source Block Parameters: R il
BOX —DhB4Z EVM User GRIO Read (mask)

Configure DMMBAZ BV User GRIO registers,
implemented through on-board FPGA, to read logic 0
ot 1 walues from User GPIO gins.

—Parameters
v bito
v hit1

v hit2

v hit3

[hit4

[hith

[hith

[hit?
Sample time:
[0.01

8] I Cancel Help

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit
0 is register 0, bit 7 is register 7. Select the bits that represent
the registers to read. The read and write functions cannot share
the same registers. If you select a register to read, you cannot
write to that register.

Sample time
Time in seconds between consecutive inputs to the registers.
Enter any real positive value or a variable name from your
workspace.

See Also DM642 EVM FPGA GPIO Write

7-235

DM642 EVM FPGA GPIO Write

Purpose
Library

Description

OMS42 EVIM
User GPID Write
(11110000}

Write:

Dialog
Box

7-236

Write to GPIO registers
“DM642 EVM (dm642evmlib)” on page 6-6

Added to your model, this block writes logical values to the GPIO
registers you select in the dialog box, reading the data from an upstream
block as an unsigned 8-bit word.

The DM642 EVM offers eight general purpose /0 registers that you can
read from and write to for your needs. Each I/O pin represents either a
logical 0 or 1 depending on the signal at the pin.

An important note — you cannot read and write to the same 1/0
registers with the FPGA GPIO Read and FPGA GPIO Write blocks. If
you write register 1 with the write block you cannot read from register
1 with the read block. This applies to all eight registers.

[Z]sink Block Parameters: Write |

— DE42 BV User GPIO White [mask) (link)

Configure DEA2 BV User GRID registers, implemented through on-board FPGA, to
output logic 0 ar 1 walues on User GRID pin.

— Parameter

[~ hitd
I bit1
I~ hit2
I~ hit 3
IV bit 4
IV bit 5
[bitE
W hit 7

ak Cancel Help Apply

DM642 EVM FPGA GPIO Write

bit 0 to bit 7
Each bit represents the logical value at one GPIO register. Bit
0 is register 0, bit 7 is register 7. Select the bits that represent
the registers to write. The read and write functions cannot share
the same registers. When you select a register to write to, you
cannot read that register.

See Also DM642 EVM FPGA GPIO Read

7-237

DM642 EVM Video ADC

Purpose Video decoders to capture analog video
Library “DM642 EVM (dm642evmlib)” on page 6-6
Description
DMEAZEWM ¥
Ch

Video ADC Cr
Wideo Capture

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture analog video data from the video input ports on the DM642
EVM.

2 Convert the input to a format and mode you define in the block.

3 Output the converted digital video for further downstream processing.

Adding two of these blocks to a model lets you capture two separate
video data streams and prepare them for display simultaneously, such
as in picture-in-picture mode.

The block captures and buffers one frame (two fields for NTSC standard)
of analog input video from the input ports, converts the buffered video
to the specified format, and then outputs the converted video frame as
8-bit unsigned integer data for further processing.

Input to the DM642 EVM must be analog National Television Standards
Committee (NTSC) or Phase Alternating Line (PAL) video format. The
block captures and processes data in frames, not fields.

To configure the format for the output video, the block offers output
format options that control how the block handles color data. The block
also offers a sample time option to let you set the frame rate for video
output from the block.

7-238

DM642 EVM Video ADC

Note This block does not provide output video for display. Use the
DM642 EVM Video DAC to generate video data to output to the

board video output connectors. The DM642EVM board provides both
composite and S-video connectors for output. However, these are driven
simultaneously, so you do not need to specify which one is to be used.

When you add this block to a Simulink model, it has no affect in your
simulation — it outputs a string of zeros. Generating code from a model
that includes this block produces the code needed for capturing data on
your evaluation module by adding

® Video device configuration code for the chosen mode

® Code used to copy the run time buffer

To use video in a Simulink model, use one of the available video source
blocks to introduce video data to your model.

Options for the block let you configure the digital video format and
video mode for the data output by the block.

NTSC TV systems use interlaced scanning to create TV frames from
fields. The even and odd TV lines are separated into even and odd fields
that combine to make a complete TV frame image. For output, the block
always provides complete frames, consisting of two fields, which are
available at any instant. When the sample time you specify for the
block is different from the NTSC frame rate of 30Hz, you may encounter
visible anomalies in the video stream from the block.

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not
create the heap, either using the default values in the DM642 Target

7-239

DM642 EVM Video ADC

7-240

Preferences block or setting your own values. Target Support Package
software returns an error.

Use Create heap and Heap size and set the heap size in the
DM642EVM Target Preferences block to configure the heap. Select
Define label and name the heap EXTERNALHEAP in Heap label.

The default settings for the target preferences create a heap with
sufficient memory to handle the worst case memory allocation needs
automatically. If you configure the heap without sufficient memory,
you get a run-time error because the system cannot initialize the video
driver.

Notes About Converting NTSC Video Input From YCbCr to
RGB24

When you choose to convert your NTSC YCbCr-defined video input

to RGB24 (8:8:8 RGB) for output from the block, the block performs

an intermediate conversion step that follows a standard process for
conversion (as described by Graphical Device Interface (GDI) color space
conversions documentation from the International Color Consortium

(ICQO)).

First, the block converts the luma component (Y’), blue-difference
chroma component (Cb), and red-difference chroma component (Cr) of
the input signal to 5:6:5 RGB format where the red and blue channels of
the source use a 5-bit representation and the green channel uses 6 bits.

Now the block converts your 5:6:5 RGB to 8:8:8 RGB using the following
conventions:

1 For the red and blue 5-bit channels, it copies the three most
significant bits (MSB) from the 5-bit source word and append them to
the lower order end of the target word.

2 For the green 6-bit channel, it copies the two MSBs from the green
source word and append them to the lower order end of the target
green word.

DM642 EVM Video ADC

The results is to output three RGB channels — red, green, and blue
— each with 8-bit words.

For example, to convert hexadecimal values by this algorithm, 5:5:5
RGB data of (0x19, 0x33, 0x1A) becomes (0xCE, 0xCF, 0xD6) of 8:8:8
RGB output.

To do the conversion in the binary case for 5:5:5 RGB data:

1 blue data 1 1101 converts to 11101111
2 for the green channel, conversion takes 11 0011 to 1100 1111

3 red data 1 0101 becomes 1010 1101 (same algorithm as blue data)

To maximize the speed of the RGB conversion, the Video ADC block
provides color space conversion using a routine written in assembly
language and optimized for the DM64x processor core. Using the
optimized color space conversion code replaces the Color Space
Conversion block available from the Video and Image Processing
Blockset™ (VIP blockset). While you can use any compatible VIP
blockset block with the DM642, this particular color space conversion
operation is handled better by the conversion code included in the

ADC block.

7-241

DM642 EVM Video ADC

Dialog x

Box — DMBAZ EVM Yideo ADC [mazk) [link)

Configures the DE42 BV board peripherals and on-board video decoder device to
receive a ztream of wideo data from the input video port. The output of the block iz 2
stream of 8-bit per pivel image frames captured from the input analog video stream.
Interlaced frames are combined to form one progressive image at the output ports,

— Parameter.

Decoder type: ISM?'I 15

Input part: IF'nrt 0

Made: [MT5C

Analog videa input: IEompnsite

Output size: |?2DH4BD

Output farmat: IYCbEr

Ll Lef Le] Lef Lo Lo Le

D ata order: IF!ow mnajar

[Inherit zample time

0k I Cancel Help

Decoder type
Configures the block options to support either the TVP5146
Decoder on the DM642 EVM or the SAA7115 Decoder, depending
on the model of your board. Choose one option from the list —
TVP5146 or SAA7115. When you select SAA7115 for the type
of decoder, the dialog box adds a new option — Output Mode.
Generally, older DM642 EVM boards use the SAA7115 decoder.
Newer boards use the default setting TVP5146 decoder. Refer to
“Identifying Your DM642 EVM Board Version” on page A-3 for
information about identifying the revision of your DM642 EVM.

Input port
Directs the block to capture video from either the 0 or 1 video
input port on the DM642 EVM. The block does not support port 2

7-242

DM642 EVM Video ADC

for video input. Input port O provides both composite video (via
connector J15) and S-video (connector J16) inputs.

Mode
Select the video format to capture from the list. The block
supports NTSC and PAL video formats.

Analog Video Input
Select composite video or S-video. The video decoder connected to
port O has both composite and S-video inputs. These are available
via connector J15 and J16, respectively. Port 1 has two composite
video connectors and no S-video availability.

Output size
Reports the size of the video images to output. Output size is a
read-only parameter set to 720 x 576 resolution elements when
you select PAL mode and the TVP5146 decoder in Decoder type.
When you select NTSC mode with the TVP5146 decoder, Output
size reports the read-only value 720 x 480.

If you select the SAA7115 decoder, Output size lists the available
video sizes to output for further processing, depending on the
Mode setting. The following tables show the sizes to pick from
depending on whether you pick NTSC or PAL for Mode The block
scales the input video to the selected size for output.

Video Output Size Options | Description
For NTSC Mode

128 x 96 Output NTSC video with
dimensions 128 pixels by 96
pixels. Scales the output to 1/4
the resolution of QCIF video.

176 x 144 Output NTSC video with
dimensions 176 pixels by 144
pixels. Scales the output to 1/4
the resolution of CIF video.

7-243

DM642 EVM Video ADC

7-244

Video Output Size Options
For NTSC Mode

Description

320 x 240

Output NTSC video with
dimensions 320 pixels by 240
pixels. Scales the output to
standard interchange format
NTSC. Derived from CCIR 601
video (most often).

720 x 480

Output NTSC video with
dimensions 720 pixels by 480
pixels. Scales the output to
higher definition TV mode.

Video Output Size Options
For PAL Mode

128 x 96

176 x 144

320 x 240

720 x 576

Description

Output video with dimensions
128 pixels by 96 pixels

Output video with dimensions
176 pixels by 144 pixels.

Output video with dimensions
320 pixels by 240 pixels

Output video with dimensions
720 pixels by 576 pixels

Output format

Determines how the block represents color data in the output.
Choose one of the following color representations according to
what your model and algorithm require.

DM642 EVM Video ADC

Digital Output
Format Description

RGB24 Output uses 8 bits each of red, green, and
blue colors to represent the color of each
pixel in the image. RGB color space is
device-dependent.

YCbCr Output from the block includes three
channels to represent the color image data
per pixel:

® Y — the luma component (essentially a
black/white signal)

e Cb — the blue-difference chroma
component

e Cr — the red-difference chroma

component

This is the digital standard color space DVDs
use.

Y Black/White video. No color/chromaticity
values.

Data order
With data order, you control the way the video decoder stores
and outputs video data fields and frames of images. Choose one
of these options from the list.

® Row major — store video data in row major order. This is the
default setting and matches most video data.

® Column major — store video data in column major order. The
Simulink and MATLAB software use this format to store
images and matrices.

7-245

DM642 EVM Video ADC

See Also

7-246

DM642 EVM Video ADC blocks store the image data in row major
format because most video capture devices use a scanning order of
left-to-right and top-to-bottom, favoring the rows.

MATLAB and Simulink software use column major ordering to
store image and matrix data. Therefore, some of the Simulink
blocks may not work correctly or as expected with the DM642
EVM Video ADC blocks.

To address this problem, the Video ADC blocks include an option
Data order to let you select either row major or the column
major storage formats. By default, this block uses row major data
format.

When you select Column major, the block performs an explicit
transposition on the image data to map the data format from row
major to column major order. To minimize the processor time
spent on the transposition, the block uses optimized assembly
routines to transpose the image data.

Inherit sample time

Selecting Inherit sample time sets the sample time to —1. To
use this block in a function call subsystem, you must select this
option. Inherit sample time is cleared by default and the block
uses the model sample time.

Specifying sample-time inheritance for a this block, a source
block, can cause Simulink software to assign an inappropriate
sample time to the block. You should avoid selecting Inherit
sample time unless you are required to do so because you placed
the block in a function call subsystem. When you select Inherit
sample time, Simulink software displays a warning message
when you update or simulate the model.

DM642 EVM Video DAC

DM642 EVM Video DAC

Purpose

Library

Description

hd
Ch
Cr

[hAS2 BV A

Video DAC

Wideo Display

Video encoder to display video
“DM642 EVM (dm642evmlib)” on page 6-6

In the project generated from a model, this block provides the code to
gather video from another block in the model, and direct the video
stream to the video output port on the board.

You should input unsigned 8-bit integers to the block in the specified
mode.

Adding this block to a model enables code generated from your model to
perform the following tasks:

1 Capture digital video data from the application on your DM642 EVM.

2 Buffer the captured video into frames for NTSC display — two fields
per frame and 30 frames per second, or SVGA display — RGB24
color with noninterlaced frames.

3 Convert to analog video.

4 Output the converted analog video to the EVM Video Out ports.

Unlike the DM642 EVM Video ADC block, this DAC block does not
convert the video between formats. Nor does this block inherit any
settings from the DM642 EVM Video ADC block, as some of the other
C6000 DAC blocks do.

The Mode option specifies both the video format the block accepts and
the format the block outputs to the video output ports on the EVM.

To be able to be displayed, images that you send to the block should be
equal to or smaller than the target display size. If the input images
are smaller than the target display size, the block pads the image by
adding zeros to the image.

When you add this block to your Simulink model, it has no affect on
your simulation — it outputs a string of zeros. In code generation, the

7-247

DM642 EVM Video DAC

7-248

block creates the device code needed to buffer, convert, and send video
to the output port on the EVM.

Note The DM642EVM board provides both composite and S-video
connectors for output. However, these are driven simultaneously, so
you do not need to specify which one is to be used.

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not
create the heap, either using the default values in the DM642 Target
Preferences block or setting your own values. Target Support Package
software returns an error.

Use Create heap and Heap size and set the heap size in the
DM642EVM Target Preferences block to configure the heap. Select
Define label and name the heap EXTERNALHEAP in Heap label.

The default settings for the target preferences create a heap with
sufficient memory to handle the worst case memory allocation needs
automatically. If you configure the heap without sufficient memory,
you get a run-time error because the system cannot initialize the video
driver.

DM642 EVM Video DAC

Dialog

Box

E] Sink Block Parameters: Video Display il

—DME42 EVM Video DAC (mask)

Configures the DME42 EVM board peripherals and on-board SAA7105 device to
send a stream of video data to the output video port. The block inputs are of

unsigned &-bit integer type.

The size ofthe inputimages must be less than or equal to the size of the display.
An implicit zero-padding is performed when the inputimage is smaller than the
display. The image can be optionally centered on the display.

—Parameters

Mode: I MNTSC 720x480 ¥ CbCr

Data order:lRow major

R
=

0K I Cancel Help | Apply |

Mode

Specifies the video format for the block. The block then sends
video in this format to the video output port on the EVM. The
Mode parameter offers the following options:

Analog Output

Mode Description
NTSC 720x480 Analog output of video data in
YCbCr 720-by-480 pixels format with full color.

NTSC 640x480 Y

Analog video output in 640-by-480
pixels format with black and white only
(luminance). No color data.

SVGA 800x600
RGB24

Full super VGA format 800-by-600
pixels with three color channels: 8-bit
red, 8-bit green, and 8-bit blue data.

7-249

DM642 EVM Video DAC

7-250

Analog Output
Mode

Description

PAL 720x570 YCbCr

Analog output of video data in
720-by-570 pixels PAL format with full
color.

PAL 720 x 570 Y

Analog output of video data in
720-by-570 pixels PAL format with
black and white only (luminance). No
color data.

Data order

With data order, you control the way the video decoder stores
and outputs video data fields and frames of images. Choose one
of these options from the list.

® Row major — store video data in row major order. This is the
default setting and matches most video data.

® Column major — store video data in column major order.
Simulink and MATLAB software use this format to store

images and matrices.

DM642 EVM Video DAC blocks store the image data in row
major format because most video display devices use a scanning
order of left-to-right and top-to-bottom, favoring the rows.

MATLAB and Simulink software use column major ordering to
store image and matrix data. Therefore, some of the Simulink
blocks may not work correctly or as expected with the DM642
EVM Video DAC blocks.

To address this problem, the Video DAC blocks include an
option Data order to let you select either row major or the
column major storage formats. By default, these blocks use
row major data format.

When the column major data ordering option is selected, the
block performs an explicit transposition on the image data to
map the data format from row major to column major order.

DM642 EVM Video DAC

To minimize the processor time spent on the transposition,
the block uses optimized assembly routines to accomplish the
image transposition.

Center Image
Directs the block to center the output image on the display.
Centering the image requires some computation by the processor
so there are small time and CPU cycles penalties for choosing this
option. For that reason, Center image is cleared by default.

Another note of interest — some cameras pad their video output
with zeros to ensure that the display does not cut off the image on
one side, usually the left. Images that include such padding may
appear to be off-center on the display. In fact, while the displayed
image may not appear centered, the electronic image (the data
that compose the displayed image plus the padding which you
cannot see) 1s centered in the display area.

See Also DM642 EVM Video ADC

7-251

DM642 EVM LED

Purpose
Library

Description

Dna42 EVI
LED

LED

7-252

Control LEDs
“DM642 EVM (dm642evmlib)” on page 6-6

Controls the User LEDs on the DM642 EVM while the processor
executes your generated code. To trigger the LEDs, input an unsigned
8-bit integer to the block. In response, the eight user-controlled LEDs
reflect the binary equivalent of that input value — turning off an LED
is 0 and turning on an LED is 1.

During operation, the LED block inherits the sample time from the
upstream block in the model. Therefor, each time the model operation
encounters the LED block, the block writes the desired output value
to the LEDs.

m Block Parameters: LED ed S

DME42 BV LED [maszk]

Contrales the User LEDz on the DkE42 BV during execution of generated code. The
input must be an unzigned 8-bit integer, and the binary equivalent of that value will be
reflected on the eight uger-controlled LEDrs.

LCancel Help Spply

You see the block does not provide user options. Adding the block to
your model adds the ability to control the LEDs.

DM642 EVM Video Port

Purpose
Library

Description

DmMa42
Video Port [
{Port 0)

Raw Capture

Video port to receive video data from video input port
“DM642 EVM (dm642evmlib)” on page 6-6

Adding this block to your model lets you define the format of raw video
captured by the video port on the DM642 EVM. The block outputs video
as a stream of image frames built from the defined input.

You can select the video port the block reads from, set the size of the
input data in bits per pixel, and define the frame sizes in pixels and
lines.

When your process captures standard video input, like NTSC format
video, another block for the DM642 EVM may be appropriate — the
DM642 EVM Video ADC block.

By default, the block settings define NTSC format input video to capture
— 640 pixels wide by 480 lines tall using 8 bits per pixel.

The block does not check your inputs to determine whether they form
valid frames. You must be sure the values you assign work for you
application.

The block does not support video capture from port 2 on the EVM.

Blanking intervals, both horizontal and vertical, represent the time
needed for the scan to return to the starting point of the next line (the
horizontal blanking period) or field or frame (the vertical blanking
period).

Memory Use

This block allocates video capture buffers on the system heap, using a
TI driver that allocates three frame buffers on the heap for continuous
video capture. To use the block you must create a heap in external
memory on the target with the label EXTERNALHEAP. If you do not
create the heap, either using the default values in the DM642 Target
Preferences block or setting your own values. Target Support Package
software returns an error.

7-253

DM642 EVM Video Port

Dialog
Box

7-254

Use Create heap and Heap size and set the heap size in the
DM642EVM Target Preferences block to configure the heap. Select
Define label and name the heap EXTERNALHEAP in Heap label.

The default settings for the target preferences create a heap with
sufficient memory to handle the worst case memory allocation needs
automatically. If you configure the heap without sufficient memory,
you get a run-time error because the system cannot initialize the video

driver.

] source Block Parameters: X|

—DhE42 Video Por (mask)

Configures the DMEAZ video port to receive a stream
of video data from the inputvideo pot. The output of

the block is a stream of image frames captured from
the inputwideo stream.

—Parametars

Video Port :

MNurnber of Bits Per Pixel:l G-hit (outputs Lintd) j

Mumber of Fixels Per Line:

|540

MNumber of Lines Fer Frame:

480

Pixel Clock Freguency (Hz):

[10e6

Haorizantal Blanking (in Pixel Clocks):

[10

“erical Blanking (in Pixel Clocks):

|20

Data Drder:l Fow major j

™ Inherit sample time

[8]:4 I Cancel | Help

DM642 EVM Video Port

Video Port
Select the video port to be the source of the raw video data stream.
Either 0 or 1 appear on the list and 0 is the default port.

Number of bits per pixel
Select the number of bits used to represent a pixel in the input
video stream. List entries tell you the input pixel representation
and the data type of the output pixels for each input size. You
cannot enter values here. Select from the list.

Number of pixels per line
Configure the width of each video frame in pixels. Enter the pixel
count as an integer greater than zero.

Number of lines per frame
Configure the height of a single frame of video in lines. Enter the
number of lines as an integer greater than zero. Combined with
the Number of bits per pixel, this specifies the video frame
format.

Pixel clock frequency
Specify the rate at which picture elements (pixels) arrive at the
block input. Usually you enter this in Hz using scientific notation
as shown by the default value. You can enter the value in decimal
notation as well.

Horizontal blanking (in pixel clocks)
The blanking signal that occurs at the end of each video scanning
line. Enter the value as an integer number of pixels. One video
line comprises the number of pixels in the line plus the horizontal
blanking pixels.

Vertical blanking (in pixel clocks)
The blanking signal that occurs at the end of each video field or
frame. Enter this value as an integer number of lines (pixels).
One frame includes the number of lines in the height of the frame
plus the additional blanking lines.

7-255

DM642 EVM Video Port

Data order

With this option you tell the encoder whether to output video

in row major or column major order. Most video capture and
display systems use row major ordering. MATLAB and Simulink
software use column major order. As a result, some Simulink
blocks and MATLAB operations may not produce the output you
expect unless you change the ordering for video from the default
row major setting to column major.

Inherit sample time
Selects whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also DM642 EVM Video ADC, DM642 EVM Video DAC

7-256

DM642 EVM Reset

Purpose
Library

Description

Resat
CikG42 EVM

Resat

Dialog
Box

Reset to initial conditions
“DM642 EVM (dm642evmlib)” on page 6-6

Double-clicking this block in a Simulink model window resets the
DM642 EVM that is running the executable code built from the model.
When you double-click the Reset block, the block runs the software
reset function provided by CCS IDE that resets the processor on your
DM642 EVM. Applications running on the board stop and the signal
processor returns to the initial conditions you defined.

Before you build and download your model, add the block to the model
as a stand-alone block. You do not need to connect the block to any
block in the model. When you double-click this block in the block library
it resets your DM642 EVM. In other words, anytime you double-click a
DM642 EVM Reset block you reset your DM642 EVM.

This block does not have settable options and does not provide a user
interface dialog box.

7-257

DM6437 EVM ADC

Purpose

Library

Description

Dialog
Box

7-258

Configure AIC33 audio codec to capture audio stream from LINE-IN
or MIC

“DM6437 EVM (dm6437evmlib)” on page 6-6

This block uses the AIC33 audio codec on the DM6437 EVM board to
capture an analog audio stream from the Line In or Mic jacks and
generate a digital frame-based output. Output is a [Nx2] array of int16
values representing the left and right channels of the sampled signal,
where N is the number of samples per frame. Use the Inherit sample
time parameter to place the ADC block in an asynchronous function
call subsystem.

E! Source Block Parameters: ADC B

—ADC (mask) (link)

Configures the AIC33 audio codec on the DM&437EYM board ko capkure an audio
streann Frarm the Line In or Mic In jacks of the DME437EYM board, Output is a
[Mx=2], M being the number of samples per frame, array of int16 values
representing the |eft and right channels of the sampled signal. Use Inherit sample
time parameter ko place the ADC black in an asyncronous Function call subswskem,

—FParameters
ADE input source: =
Sampling rate: IB kHz LI

Samples per Frame:

=

[Inherit sample time

(04 Cancel Help

ADC input source
Select Line In or Mic In as the input source.

Sampling Rate

Set the sampling rate of the analog-to-digital converter, from 8
kHz (the default) to 96 kHz.

DM6437 EVM ADC

Samples per frame
Set the number of samples the block buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. For
example, if Sampling Rate is 8 kHz, and Samples per frame is
32, the frame rate is 250 frames per second (8000/32 = 250).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or Simulink base rate as determined in the
Solver options in Configuration Parameters. Selecting Inherit
sample time directs the block to use the specified rate in model
configuration. Entering -1 configures the block to accept the
sample rate from the upstream HWI, Task, or Triggered Task
blocks.

See Also DM6437 EVM DAC

7-259

DM6437 EVM DAC

Purpose Configure AIC33 codec to convert digital signal to audio output on
LINE OUT and HP OUT

Library “DM6437 EVM (dm6437evmlib)” on page 6-6

Description Configure the AIC33 stereo codec on the DM6437 EVM board to convert

a digital signal to an analog audio stream on the LINE OUT and HP
OUT output jacks. The digital signal input must be an [Nx2] array of
int16 values. Column 1 of the array is the left channel and column 2 is
DAL the right channel of the sampled signal. The sampling rate of the DAC
DAL output must match the sampling rate of the digital signal from the ADC.

.
Dialog

Box —DAC {mask) (ink

Configures the AIC33 audio codec on the DME437EYM board ko output an audio
stream, Inpuk must be a [Mx2] array of ink16 values representing the left and right
channels of the sampled signal. Sampling rate of the DAC musk match the sampling
rake of the A0 block,

D MESET EVI

—Parameters

Sampling frequency: [ENERE

ok Cancel | Help | Apply |

Sampling frequency
Select the sampling rate of the digital signal input. This value
must match the Sampling rate of the ADC block in your model.

See Also DM6437 EVM ADC

7-260

DM6437 EVM DIP

Purpose

Library

Description

[MGAET EWi

DIF

LIF

Dialog

Box

Output state of user-selected DIP switch as Boolean
“DM6437 EVM (dm6437evmlib)” on page 6-6

Outputs the state of a user-selected DIP switch or jumper on the
DM6437 EVM board. The output is a Boolean value, 0O (open) or 1
(closed). Use multiple blocks to output the state of multiple DIP
switches.

E! Source Block Parameters: DIP m

—DIP {rnask) (link)

Cutputs state of one of the selected user switches on
DME437EYM board, The output value is boolean, that is '0" ar '1',
depending on the state of the switch,

—Parameters

DIP Switch: [SHENH)

Sample time:

1

oK Cancel Help |

DIP Switch
Select the switch or jumper to sample: SW4(0),SW4(1), SW4(2),
SW4(3), JP1, SW7.

SW4 is a read-only user switch. JP1 is for NTSC/PAL selection.
SW7 is a slide switch.

Sample time
The interval between samples, in seconds. This value defaults
to 1 second between samples.

7-261

DM6437 EVM LED

Purpose

Library

Description

DMIEAET BV

LED

LED

Dialog

Box

7-262

Apply Boolean input to user-selected LED
“DM6437 EVM (dm6437evmlib)” on page 6-6

This block controls an individual LED among the User LEDs on the
DM6437 EVM during execution of generated code. The block input
accepts Boolean values, 0 (off) or 1 (on). Use multiple blocks to control
multiple LEDs.

E! Sink Block Parameters: LED m

—LED {mask) (link)

Controls the User LEDs on the DM&437EYM during execution of generated code,
The input must be a boolean value, that is either '0" or '1', and that value will be
reflected on one of the Four user LEDs selected.

— Parameters

LED rumber: [EANI——

[0]4 Cancel | Help Apply

LED number

Specify the number of the User LED that the Boolean input
controls.

DM6437 EVM Video Capture

Purpose

Library

Description

D MEA3TEVW I

Img

Wideo Capture

Wideo Capture

Dialog

Box

Configure video peripherals to capture NTSC/PAL video
“DM6437 EVM (dm6437evmlib)” on page 6-6

Configure the video peripherals to capture an NTSC/PAL video input
and make it available as a stream of YCbCr 4:2:2 interleaved data.

E! Source Block Parameters: Yideo Capti |

— Davinci Wideo Capture [masgk] [link]

Configures video peripherals to capture MTSC/PAL video,

— Parameter
Wideo capture mode: |NTSC ;I
Analog wideo input: IEomposite LI
Sample time:
14300

oK I Lancel | Help |

Video capture mode
Set the video format to match that of the input, NTSC or PAL.

Analog video input
Set the input type to match that of the input, Composite or
S-video.

Sample time
Set a sample time rate that matches the frame rate of the input
signal, typically 1/30 for NTSC and 1/25 for PAL. A mismatch
between these two rates may cause discontinuities in the video
output signal.

7-263

DM6437 EVM Video Capture

See Also DM643x Draw Rectangles, DM643x OSD, DM643x Video Display

7-264

DM643x CAN Receive

Purpose Receive messages from CAN serial communications bus on DM643x

Library “DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

Description The CAN Receive block listens to broadcast messages on the DM643x
CAN protocol bus. It saves messages with the user-specified Message
i Identifier to its message buffer. The CAN Receive block polls the
message buffer at a rate determined by Sample time. When it detects
canmoy a message in the message buffer, the block triggers the function-call
CAN Reosive output (f0) and makes the CAN message data available at the message
output (Msg).

DME42x

(]
Dialog x

Box — DMB437EYM CAM Receive (mazk] [link]

Configurez & CAN mailbox o receive meszages fram the CAMN bus on the DME437EWH.
Wwhen the meszage iz received, emits the function call to the connected function-call
subsystem as well as outputs the message data in selected format and the message
data length in bytes.

r— Parameter

b ailbos number:
o

Meszage identifier:
|bin2dec['1 110001117

Meszage bupe: |Standard [11-bit identifier] LI
Sample time:

f1

Diata type: |uint1 [j

[~ Output meszage length

aK LCancel | Help |

7-265

DM643x CAN Receive

7-266

Mailbox number
Enter a unique number from 0 to 15 for standard or from 0 to 31
for enhanced CAN mode. This field refers to a mailbox area in
RAM. In standard mode, the mailbox number determines priority.

Message identifier
Identifies the length of the message—11 bits for standard frame
size or 29 bits for extended frame size in decimal, binary, or hex
formats. If the format is binary or hex, use bin2dec(' ') or
hex2dec (' '), respectively, to convert the entry. The message
identifier is associated with a receive mailbox. This mailbox only
accepts messages that match the mailbox message identifier.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function
call to be emitted from the mailbox. To update the message
output only when a new message arrives, the block must be
executed asynchronously. To execute this block asynchronously,
set Sample Time to -1. Refer to “Schedulers and Timing” on
page 2-23 for a discussion of block placement and other necessary
settings.

For information about setting the timing parameters of the CAN
module see Chapter 5, “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message 1s, at most, 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. This block uses an 8-byte data buffer
to unpack the data, as follows:

DM643x CAN Receive

References

See Also

For uint16 data,

Output[O] = data_buffer[1..0];

Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] data_buffer([7..4];

For example, if the received message has two bytes,

data_buffer[O0]
data_buffer[1]

0x21
0x43

the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select this option to output the message length, in bytes, to the
third output port. If you do not select this option, the block has
only two output ports.

For detailed information on the CAN module, see TMS320DM643x
DMP High-End CAN Controller User’s Guide (Rev. A), Literature
Number SPRU981, available at the Texas Instruments Web site.

Chapter 5, “Configuring Timing Parameters for CAN Blocks”, DM643x
CAN Setup, DM643x CAN Transmit

7-267

DM643x CAN Setup

Purpose Configure CAN serial communications bus parameters on DM643x

Library “DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

Description This block configures the CAN serial communications bus parameters
Y. on the DM6437EVM. The Chapter 5, “Configuring Timing Parameters
T for CAN Blocks” topic provides instructions and examples for
configuring this block.
CAN Setup
CAN Setup

]
Dialog x

Box — DME43FEVM CAM Setup [mask] [link)
Configure the CAN bus parameters on the DME43ITEVM.

— Parameter:

Baud rate prescaler:
IE

TSEGT:[6
TSEG2: |2

ERM: IFaIIing edges only
Sdws: |1

Led Lef Led Lo Lo

SAbk: |S ample one time
[~ Self test mode

ak Cancel | Help | Apply |

Baud rate prescaler
Value by which to scale the bit rate. Valid values are 0 to 255.

7-268

DM643x CAN Setup

TSEG1
(Time SEGment 1) Sets the value of time segment 1, which, with
TSEG2 and Baud rate prescaler, determines the length of a bit
on the CAN bus. Valid values for TSEG1 are 2 through 16.

TSEG2
(Time SEGment 2) Sets the value of time segment 2, which, with
TSEG1 and Baud rate prescaler, determines the length of a bit
on the CAN bus. Valid values for TSEG2 are 2 through 8.

ERM
(Edge Resynchronization Mode) Sets the message
resynchronization triggering. Options are Falling edges only
and Both falling and rising edges.

SIJW
(Synchronization Jump Width) For CAN to work successfully,
all nodes on the network must be synchronized. However, as
time passes, clocks on different nodes drift out of sync, and must
resynchronize. SJW specifies the maximum width (in time
quanta) that can be added to TSEG1 (in the case of a slower
transmitter), or subtracted from TSEG2 (in the case of a faster
transmitter) to regain synchronization during the receipt of a
CAN message. Valid values for SJW are 1 to 4.

SAM
(SAMple point setting) Number of samples used by the CAN
module to determine the CAN bus level. Selecting Sample one
time samples once at the sampling point. Selecting Sample three
times samples once at the sampling point and twice before at a
distance of TQ/2 (Time Quanta/2). A majority decision is derived
from the three points.

Self test mode
Puts the CAN module into loopback mode, that sends a dummy
acknowledge message without requiring an acknowledge bit.

7-269

DM643x CAN Setup

References

See Also

7-270

For detailed information on the CAN module, see TMS320DM643x
DMP High-End CAN Controller User’s Guide (Rev. A), Literature
Number SPRU981, available at the Texas Instruments Web site.

Chapter 5, “Configuring Timing Parameters for CAN Blocks”, DM643x
CAN Transmit, DM643x CAN Receive

DM643x CAN Transmit
|

Purpose Configure CAN mailbox to transmit messages on CAN serial
communications bus on DM643x

Library “DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

Description The CAN Transmit block receives messages through the message input
S (Msg) and broadcasts them to the CAN serial communication bus on
N the DM643x.
Msg
CAN XMT

CAN Transmit

.
DICI |Og E! Sink Block Parameters: CAN Transmikt x|

Box — DME437EYR CAM Transmit [mask] [link)
Configures a CAMN mailbox to transmit message to the CAN bus on the DME43TEYM.

r— Parameter.
b ailbow number:
I

Meszage identifier:
Ibin2dec["| 110001117

Message type: IStandard [11-bit identifier] LI
¥ Enable blocking mode

ak Cancel | Help | Lpply |

Mailbox number
Sets the value of the mailbox number register (MBNR). For
standard CAN controller (SCC) mode, enter a unique number
from 0 to 15. For high-end CAN controller (HECC) mode enter a
unique number from 0 to 31 . In SCC mode, transmissions from
the mailbox with the highest number have the highest priority. In

7-271

DM643x CAN Transmit

References

See Also

7-272

HECC mode, the mailbox number only determines priority if the
Transmit priority level (TPL) of two mailboxes is equal.

Message identifier
Sets the value of the message identifier register (MID). The
message identifier is 11 bits long for standard frame size or 29 bits
long for extended frame size in decimal, binary, or hex format.
For the binary and hex formats, use bin2dec(' ') or hex2dec('
'), respectively, to convert the entry.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If you enable blocking mode, the CAN block code blocks further
transmissions indefinitely until it receives a successful transmit
acknowledge (TA bit in the CANTA register = 1). If you disable
blocking mode, the CAN block code continues transmitting
without receiving successful transmit acknowledgements.
This 1s useful when the hardware might fail to acknowledge
transmissions.

For detailed information on the CAN module, see TMS320DM643x
DMP High-End CAN Controller User’s Guide (Rev. A), Literature
Number SPRU981, available at the Texas Instruments Web site.

Chapter 5, “Configuring Timing Parameters for CAN Blocks”, DM643x
CAN Setup, DM643x CAN Receive

DM643x Draw Rectangles

Purpose

Library

Description

DME42x

Pos

DOraw Rectangles

Draw Rectangles

Dialog
Box

Configure Video Processing Back End to draw rectangles using On
Screen Display (OSD) module

“DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

This block configures the Video Processing Back End (VPBE) to draw
and position rectangles using the On Screen Display (OSD) module.
The position input (Pos) is a 1x4 vector, designates the location of
the upper-left corner of the rectangle. The position coordinates (0, 0)
originate in the upper-left corner of the video display.

E! Sink Block Parameters: Draw Rectangles |

— Davinci Rectangular Cursor [mazk)] [link)

Configures Video Processing Back End [WPBE] to draw rectangles using on screen
dizplay [050]) module.

r— Parameter.

Color: |Black

Harizontal line thickness: I'I lire:

Led Lef Lol

Wertical line thickness:|1 pixel

[Show input port for enable contral

1]4 I Cancel | Help | Apply |

Color

Select the rectangle color. For Specify via dialog, enter an
integer between 0—255. This integer specifies a corresponding
RGB color in the DM643x ROMO color lookup table (DM643x
ROMO CLUT). If you select Specify via input port, the block
displays an additional input port, Color. Like Specify via dialog,
the Color input takes an integer between 0—255 that fetches a
color from the DM643x ROMO CLUT. Changing the input value to

7-273

DM643x Draw Rectangles

the Color input port can change the color of the rectangle while
the model is running.

DG4 3 ROMO color lookup table

For more information about the DM643x ROMO CLUT, enter the
following text at the MATLAB command prompt:
help 'dm643x_clut'

Horizontal line thickness
Select the cursor height in lines.

Vertical line thickness
Select the cursor width in pixels.

Show input port for enable control
Create an input port (En) that can be used to enable or disable
the position input.

See Also DM643x OSD, DM643x Video Capture, DM643x Video Display

7-274

DM643x OSD
|

Purpose Overlay graphics and text on video

Library “DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

Description Use the On Screen Display (OSD) capabilities of the Video Processing
e Back End (VPBE) to overlay graphics and text on video.
Img
osh
osh
Dialog Window Configuration Pane
Box
x
Davinci S0 [maszk] (link]
|7 Configures Video Processing Back End [WPBE] to display graphics using on screen
dizplay [OSD] module.
window Configuration | Wideo Encoder I
05D window: [05D0 =l
Input data format; IS-bit bitmap ;I
wiindow [ocation source: ISpecify via dialog :I
‘Window location:
|[360. 240, 100, 100]
Harizartal ZDDmZ|1:-: :I
Wertical zoom: |1 b j
[~ Show input port far enable control
Blending ratin: | FOSD-+1video =l
Tranzparency mode: Ifo :I
0K LCancel Help | Apply |

7-275

DM643x OSD

OSD window
Display graphics using OSD window O or 1.

Window Mode
If you set OSD Window to OSD1, the Window Mode parameter
appears. Selecting Display configures OSD1 to display graphics.
Selecting Attribute configures OSD1 to serve as an “alpha” input
for controlling the transparency of OSDO0. The positions of the two
OSD windows must match for this to work.

Input data format
Set the format of the input data to 1-, 2-, 4-, 8-bit bitmap, or
RGB565 which provides 16-bit color depth (64k colors).

Due to bandwidth constraints, RGB565 can only be used with
one OSD window at a time. If you are using OSD1 to control
transparency (i.e., OSD1 Window Mode is Attribute), get the
best color depth by setting OSD1 Input data format to one of
the bitmap settings and OSDO Input data format to RGB565.

Window location source
Select the method for setting the location of the graphics display
window. Specify via dialog creates the Window location field.
Specify via input port creates an position input (Pos) on the
OSD block which accepts the location of the window as data.

Window location
This parameter appears when you set Window location source
to Specify via dialog. Set the pixel width, height, and base
coordinates. For example, the default values, [360, 240, 100, 100]
set the width to 360 pixels, the height to 240 pixels, the base
coordinates for x to 100 pixels, and the base coordinates for y to
100 pixels.

Note [0, 0], the origin of the coordinate system, is the located in
the upper-left corner of the VideoO window.

7-276

DM643x OSD

Horizontal zoom

Set the horizontal magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the OSD block.

Vertical zoom

Set the vertical magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the OSD block.

Show input port for enable control

Create an input port (En) to enable or disable the OSD graphics
display window. This parameter is not available when Window
Mode is Attribute.

Blending ratio

Control the degree of blending between the OSD graphics display
window and the Video display window in the background. This
can be used to superimpose a semitransparent OSD graphic on

a video background or to create fade-in and fade-out effects. The
settings range from full OSD to full video in steps of 1/8. An
additional setting, Specify via input port, creates an input port
(Blend) for changing the ratio dynamically.

Transparency mode

Turn the transparency mode of the graphics display window On or
Off, or select Specify via input port to create an input (Trans)
on the OSD block. With transparency enabled, OSD pixels that
match the color of the Video background color are rendered
transparent. This is used for typical “bluescreen” type effects.

7-277

DM643x OSD

Video Encoder Pane

E! Sink Block Parameters: 05D x|

|' Davinci S0 [maszk] (link]

Configures Yideo Processing Back End [WFBE] to display graphics using on screen
dizplay [OSD] module.

Window Configuration ideo Encoder
[” Enable horizontal 9/8 expansion
[Enable vertical 6/5 expansion

ok LCancel Help Apply

Enable horizontal 9/8 expansion
Expands the image horizontally and is typically used to
compensate for spatially compressed NTSC and PAL video
signals. For example, you can use this setting to correct a 720
x 480 pixel NTSC analog video input that is displayed as a 640
x 480 pixel image.

Enable vertical 6/5 expansion
Expands the image vertically and is typically used to compensate
for spatially compressed PAL video signals. For example, you can
use this setting in combination with the Enable horizontal 9/8
expansion setting to correct a 720 x 576 pixel PAL analog video
input that is displayed as a 640 x 480 pixel image.

7-278

DM643x OSD
|

See Also DM643x Draw Rectangles, DM643x Video Capture, DM6437 EVM
Video Capture, DM643x Video Display

7-279

DM643x PWM

Purpose

Library

Description

DG4 2

T

PW

PW

Dialog
Box

7-280

Configure DM643x DSP Event Manager to generate PWM waveforms

“DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

This block configures any one of the three PWM modules on the
DM6437; each module has one output. The PWM module’s clock cycles
depend on the DM6437’s 27 MHz input clock, and are not affected by
the DM6437’s PLL module. Upon startup, the PWM module uses the
Initial waveform period and Initial duty-cycle values. Inputs to
the waveform period port, T, and the duty-cycle port, W, can change
those values while the application is running.

The PWM block dialog box comprises four tabs:

* Timer — Select the PWM module, and configure the initial
waveform.

Outputs — Configure the initial duty cycle.

Logic — Configure the control logic.

Mode — Configure one-shot or continuous operation.

The following sections describe the contents of each tab in the dialog box.

DM643x PWM

Timer

E! Sink Block Parameters: PWH B

’rF‘WM {mask} {link;

Configures the Event Manager of DME437 DSP to generate PYWM wavefarms,

Tirner | Cutputs I Logic I Model

Module: [Pyt x|

Initial waveform period:

|0.0001
Wavefarm period units: ISeconds ;I
o Cancel | uelpl aoply |
Module

Select the PWM module for this block. All the parameter settings
in this block configure the registers of the PWM module selected.

Initial waveform period
Set the initial period of the PWM waveform. The waveform period
applied at the input port, T, changes this value. The range of
acceptable values is 0.000000296 to 79.536431370 seconds or 8
to 2311 clock cycles. These ranges depend on the 27 MHz clock
frequency and the width of the 32-bit register.

Waveform period units
Set the unit of measure of the waveform period to Seconds or
Clock cycles. This setting applies to both the Initial waveform
period and the waveform period input, T. Clock cycles depend on
the DM6437’s 27 MHz input clock.

7-281

DM643x PWM

Outputs

E! Sink Block Parameters: PWM m

’7PWM {mask) {link;

Configures the Event Manager of DME437 DSP to generate PYWM waveforms,

Initial duty-cycle:

=0

Dty cycle units: |Percentage ;I

oF I Cancel | Help | Apply |

Initial duty-cycle
Set the initial duty-cycle of the PWM. The duty-cycle applied at
the input port, W, changes this value. The range of acceptable
values is 0 to 100 percent or 8 to 2%!-1 clock cycles. These ranges
depend on the 27 MHz clock frequency and the width of the 32-bit

register.

Duty-cycle units
Set the unit of measure of the duty-cycle to percentage or clock
cycles. This setting applies to both the Initial duty-cycle and
the duty-cycle input, W. Clock cycles depend on the DM6437’s 27

MHz input clock.

7-282

DM643x PWM

o
Logic
E! Sink Block Parameters: PWM m
PR rnask) (link;
(Configures the Event Manager of DME437 DSP to generate PWM waveforms,

Timer I Outputs Lagic | Mode I

Lt Ty e el Tebl £ chivve Lo (Lows bo High)

oF I Cancel | Help | Apply |

PWM control logic
Control the state of the PWM output while it is inactive and the
polarity of the PWM waveform when it is active:

¢ Inactive Low (Low to High): When the PWM output is
inactive, the output remains low. When it is active, the first
phase is low, and the second phase is high.

¢ Inactive Low (High to Low): When the PWM output is
inactive, the output remains low. When it is active, the first
phase is high, and the second phase is low.

¢ Inactive High (Low to High): When the PWM output 1s
inactive, the output remains high. When it is active, the first
phase is low, and the second phase is high.

¢ Inactive High (High to Low): When the PWM output is
inactive, the output remains high. When it is active, the first
phase is high, and the second phase is low.

7-283

DM643x PWM

7-284

Mode

E! Sink Block Parameters: PWM X |

Pyt {rask) flink;
(Configures the Event Manager of DMe437 DSP to generate PW waveforms,

Timer I Qutputs I Logic Mode |
Pt Made: |One-shot LI

Repeat Value:

E

v Inkerrupk enable

o Cancel | ueh; p— |

PWM Mode

Set the mode to one-shot or continuous. One-shot repeats the
waveform for the number of periods given by repeat value and
then, if interrupts are enabled, generates an interrupt at the end
of operation. Continuous repeats the waveform infinitely and
generates an interrupt, if enabled, every period.

Repeat Value

Set the repeat value if PWM Mode is set to One-shot. The PWM
module outputs the waveform the specified number of times +1.

Interrupt enable

Enable the PWM module to generate an interrupt.

In one-shot mode, the PWM module generates an interrupt when
number of periods given by Repeat value have been completed.

In continuous mode, the PWM module generates an interrupt
during each period signaling that it is safe to set values for the
subsequent waveform period and duty cycle.

DM643x PWM
|

References For detailed information on the PWM module, see TMS320DM643x
DMP Pulse-Width Modulator (PWM) Peripheral User’s Guide,
Literature Number SPRU995, available at the Texas Instruments Web
site.

7-285

http://focus.ti.com/lit/ug/spru995a/spru995a.pdf
http://focus.ti.com/lit/ug/spru995a/spru995a.pdf

DM643x UART Config

Purpose

Library

Description

DME43x

UART Config

UART Config

Dialog
Box

7-286

Configure DM643x UART for serial communication

“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2
“DM6437 EVM (dm6437evmlib)” on page 6-6

Configure the serial communication parameters that are common to the
transmit and receive elements of the DM643x UART module. If your
model contains a DM643x UART Transmit block or a DM643x UART
Receive block, it must also contain a DM643x UART Config block.

The UART module converts data between parallel and serial formats
depending on whether it is transmitting or receiving data from external
peripheral devices. Except for the Module parameter, configure all of
the parameters in this block so they match the serial communication
settings of the external peripheral devices.

E! Block Parameters: UART Config il

—UART Config {(mask) {ink)

Configures the parameters of the DM&437 UART module for serial communication

—Parameters
Module: |UARTD x|
Baud Rate: |2400 x|
Data bits: |3 =l
Parity: |None |
Stop bits: |1 |

=

Flow control: II‘-Jone

oK Cancel Help | Apply |

DM643x UART Config

Module
Select the UART module this block configures, UARTO or UART1.
Your model can only contain one DM643x UART Config block
per module.

Baud rate
Set the rate of signal modulations per second. Choose from 2400,
4800, 9600, 19200, 38400, 57600, or 115200.

Data bits

Set the number of data bits in the character frame, from 5, 6,
7, or 8.

Parity
Enable and configure parity error detection.

In parity error detection, the transmitter reserves a parity bit at
the end of the character frame, adds the number of 1’s in the data
bits, and assigns a value to the parity bit. The receiver compares
the number of 1’s in the data bits with the value of the parity bit.
If the two values don’t match, the receiver signals the transmitter
that an error has occurred.

* None disables parity error detection. The character frame does
not include a parity bit.

¢ (Odd enables parity error detection and reserves a parity bit at
the end of the character frame. If the data bits contain an odd
number of 1’s, the method assigns a value of 0 to the parity bit.

¢ Even enables parity error detection and reserves a parity bit to
the end of the character frame. If the data bits contain an even
number of 1’s, the method assigns a value of 0 to the parity bit.
Stop bits
Select 1 or 2.

Flow control
Select None or Hardware.

7-287

DM643x UART Config

References For detailed information on the UART module, see TMS320DM643x
DMP Universal Asynchronous Receiver/Transmitter (UART) User’s
Guide, Literature Number: SPRU997, available at the Texas
Instruments Web site.

See Also DM643x UART Receive, DM643x UART Transmit

7-288

DM643x UART Receive

Purpose

Library

Description

DME42x

Msg

. Sistus
UART Recsive

UART Recsive

Dialog
Box

Configure receiver element of DM643x UART module for serial

communication

“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2
“DM6437 EVM (dm6437evmlib)” on page 6-6

Configure the serial communication parameters of the receiver element
of the DM643x UART module. The receiver element converts data from
external peripheral devices from serial to parallel format and passes it
to the CPU. If your model contains a DM643x UART Receive block, it
must also contain a DM643x UART Config block.

—JART Receive [mask) (ink)

x|

Configures the parameters of the DM&437 UART receive module
for serial communication

—Parameters

Data size:

Module: |UARTD x|

| 100
[™ Enable blocking mode

Sample Time:

|1

Cancel Help

Module

Select the UART module this block configures, UARTO or UART1.
Your model can only contain one DM643x UART Receive block per
module. This parameter must also match the Module parameter

in the DM643x UART Config block.

7-289

DM643x UART Receive

References

See Also

7-290

Data size
Set the data size, in bytes, of each transmission. Blocking mode
uses this parameter to determine whether to generate an error.

Enable blocking mode
Enable this parameter to generate an error if the size of the last
data transmission does not match the value of the Data size
parameter. The DM643x UART Receive block sends the error
message as a negative value on its Status output. If you disable
Enable blocking mode, the block sends the number of bytes it
received as a positive value on its Status output.

Sample time
Set the sample time for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Scheduling” on page 2-25 for a discussion of block
placement and other necessary settings.

For detailed information on the UART module, see TMS320DM643x
DMP Universal Asynchronous Receiver/Transmitter (UART) User’s
Guide, Literature Number: SPRU997, available at the Texas
Instruments Web site.

DM643x UART Config, DM643x UART Transmit

DM643x UART Transmit
|

Purpose Configure transmitter element of DM643x UART module for serial
communication
Library “AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

“DM6437 EVM (dm6437evmlib)” on page 6-6

Description Configure the serial communication parameters of the transmitter
element of the DM643x UART module. If your model contains a
DM643x UART Receive block, it must also contain a DM643x UART
Config block. The transmitter element converts parallel data from the
CPU to a serial data format for output to external peripheral devices.

DhE423x

Msg

UART Transmit

UART Transmit
Dia Iog E! Sink Block Parameters: UART Transmit il
Box —UART Transmit {mask) {ink)

Configures the transmitter of the DM&437 UART module for serial communication

—Parameters

Module: |UARTD x|

Data Size:

| 100

oK Cancel Help Apply

Module
Select the UART module this block configures, UARTO or UART1.
Your model can only contain one DM643x UART Transmit
block per module. This parameter must also match the Module
parameter in the DM643x UART Config block.

Data size
Set the number of bytes to send per transmission.

7-291

DM643x UART Transmit

References For detailed information on the UART module, see TMS320DM643x
DMP Universal Asynchronous Receiver/Transmitter (UART) User’s
Guide, Literature Number: SPRU997, available at the Texas
Instruments Web site.

See Also DM643x UART Config, DM643x UART Receive

7-292

DM643x Video Capture
|

Purpose Configure Video Processing Front End (VPFE) to capture REC656 or
generic YCbCr 4:2:2 video
Library “AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2
Description Configure the video processing front end (VPFE) to capture NTSC or
PAL video.
DMEa2x
Y ChOCr [
Video Capture
Video Capture
Dialog VPFE
Box

x

DM&43x VPFE Capture {mask) (ink)

Configures video processing front end (VPFE) to capture RECA56
or generic YChCr 4:2: 2 video.

VPFE | External Device I

Video capture interface: IRECE-SE- LI

Frame size ([rows, columns]):

| 720, 430]

Capture start pixel ([row, column]):
o, o]

Sample time:

f1/30.0

Cancel Help

7-293

DM643x Video Capture

Video capture interface

Configure this parameter to match the format of the input signal
using either the REC656 or Generic YCbCr-4:2:2 option. The
REC656 format is also known to as ITU-R BT.656 or CCIR-656
and comprises an 8-bit YCbCr 422 input signal. Generic
YCbCr-4:2:2 comprises an 8-bit signal with discrete horizontal
(H) and vertical (VSYNC) signals, such as a computer monitor
signal.

Data input mode

When Video capture interface is set to Generic YCbCr-4:2:2,
set this parameter depending on the number of pins used by the
physical interface. If the physical interfaces uses pins 0-8, select
8-bit. If the physical interface uses pins 0—15, use 16-bit. When
you select 16-bit, the lower 8 pins capture Y and the upper 8 pins
capture the C (chroma) components.

For more information, refer to Table 1. Interface Signals for
Video Processing Front End in the TMS320DM643x DMP Video
Processing Front End (VPFE) User’s Guide, Literature Number:
SPRU977, available on the Texas Instruments Web site.

Scan mode

If you set Video capture interface to Generic YCbCr-4:2:2,
set Scan mode to match the scan mode of the input signal,
Interlaced or Progressive. Regardless of the setting, the
block outputs an interleaved YCbCr 422 signal, which you can
deinterleave using the C6000 Deinterleave block.

Note If you set Scan mode to Interlaced, verify that the Field
ID signal is connected to the correct input pin for this video
capture driver to work correctly.

Frame size

Define the size of the capture frame. You can use this parameter
to capture the entire input frame or to capture just a portion of it.

DM643x Video Capture

The Frame size parameter values must be greater than zero and
no greater than the size of the input frame. Enter the row and
column dimensions of the capture frame in pixels. For example,
entering [740, 480] sets the row width to 740 pixels, and the
column height to 480 pixels.

Capture start pixel
Set the location of the capture frame relative to the display frame,
using the upper-left corners of both frames (e.g., [0, 0]) as the
point of reference. You can position the start pixel anywhere in
the input frame. Enter the row and column dimensions of the
Capture start pixel in pixels. For example, entering [10, 20]
positions the upper-left corner of the capture frame at row 10,
column 20 from the upper-left corner of the display frame.

The combination of the Frame size and Capture start pixel
parameters may place the capture frame outside the display
frame. If so, the portions of the capture frame that lie outside
the display frame capture null video data (black screen) without
generating an error.

Sample time
Set the sampling rate of the video capture frame. Enter Sample
time as a fraction of 1 over the sample rate per second. For
example, to obtain a sample rate of 30 frames per second, enter
1/30.0. NTSC has a typical frame rate of 1/30, while PAL usually
requires 1/25.

You can set this parameter to match the frame rate of the
input signal, or you can use it to downsample the input signal.
For example, sampling a 1/30 input at 1/15 halves the data
throughput of the signal.

Setting the sample time to a different value from the input signal

refresh rate may cause discontinuities in the video image. Avoid
exceeding the sample rate of the input signal.

7-295

DM643x Video Capture

7-296

External Device

x

|VDM643:(VPFE Capture {mask) {ink)

Configures video processing front end (VPFE) to capture RECG56
or generic YChCr 4:2: 2 video.

VPFE

External decoder: ISpeciﬁ' via input dialog ;I

External decoder module name:

<video decoder module name here

oK Cancel Help

The External Device tab enables you to connect a video device with
an external video decoder to the VPFE. When you specify the external
coder, you create hookpoints in the VPFE driver initialization code
for opening the external video decoder, starting the data output, and
closing the external video decoder. The external decoder plugs into the
following function pointers:

e EVD_Handle (*Open)()
¢ Int (*Close)(Ptr handle)
¢ Int (*Control)(Ptr handle,Uint32 Cmd,Ptr CmdArg)

DM643x Video Capture

For example, if you were to enter “PSP_VPFE_TVP5146” for External
decoder module name, you would declare the following functions as
shown:

// External device open function

EVD_Handle PSP_VPFE_TVP5146_Open(void);

// External device close function

Int PSP_VPFE_TVP5146_Close(EVD_Handle handle);

// External device control function

Int PSP_VPFE_TVP5146_Control(EVD_Handle handle, Uint32 Cmd, Ptr CmdArg);

The VPFE driver also assumes that a user structure

named TVP5146_ConfigParams and a variable called
PSP_VPFE_TVP5146_params exists to pass to the
PSP_VPFE_TVP5146_Control function. In other words, there
must be a declaration like the following:

typedef struct _PSP_VPFE_TVP5146_ConfigParams
{

int dummy; // User defined fields

} PSP_VPFE_TVP5146_ConfigParams;
TVP5146_ConfigParams PSP_VPFE_TVP5146_params;

You must use the custom code interface to add the header file

that declares function prototypes and the source files that contain

the implementation of the _Open, *_Close and *_Control functions

to the generated project. To see an example, download the Avnet
S3ADSP DaVinci Evaluation Platform Support Package from
http://www.mathworks.com/matlabcentral/fileexchange/22191, and
open the model, avnet_test_dm6437evm.mdl. (Do not install the Avnet
S3ADSP DaVinci Evaluation Platform Support Package. It is for
R2008a only.)

External decoder
If your target is connected to a video device that outputs a RAW
video signal and relies on the DM643x VPFE’s built-in decoder,
select None. If your target is connected to a video device with

7-297

http://www.mathworks.com/matlabcentral/fileexchange/22191%2C

DM643x Video Capture

7-298

See Also

References

a decoder that outputs REC656 or generic YCbCr-4:2:2, select
Specify via input dialog.

External decoder module name
If you set the External decoder to Specify via input dialog,
then enter a name for the external video decoder module name in
this field.

DM643x Draw Rectangles, DM643x OSD, DM643x Video Display

TMS320DM643x DMP Video Processing Front End (VPFE) User’s
Guide, Literature Number: SPRU977, available from the Texas
Instruments Web site.

DM643x Video Display

Purpose

Library

Description

DME4 2

Configure Video Processing Back End to display NTSC/PAL video

“DM6437 EVM (dm6437evmlib)” on page 6-6
“AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)” on page 6-2

This block configures the Video Processing Back End (VPBE) to display
NTSC/PAL video.

The block dialog box comprises multiple tabs:

¢ Window Configuration — Configure the video window, position,
zoom, and whether to display the input port.

¢ Video Encoder — Configure the video display mode, analog video

output, and horizontal or vertical expansion.

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

7-299

DM643x Video Display

7-300

Window Configuration

E! Sink Block Parameters: ¥ideo Display i[

" Datinci Yideo Dizplay (mazk] [link)

Configures Video Processing Back End [WPBE] to dizplay MTSC/PAL video.
Wideal window can only be uzed if Yideal iz already configured and uszed.

\Window Caonfiguration | Video Encoder I

Video window: |Videc-D |
wfindo locatior:
Ji0. 0, 720, 450]
Horizantal zoom: I'I W LI
Wertical zoamm: I'I ¥ LI
[~ Show input port for enable control

ok Cancel | Help | Appln |

Video window
Create a video display window, VideoO or Videol.

You must create a VideoO display window before you can use
the following video elements:

¢ a Videol video display window from the DM643x Video Display
block

¢ an on-screen display from the DM643x OSD block
¢ a video rectangle from the DM643x Draw Rectangles block

Window location source
Select the method for setting the location of the graphics display
window. Specify via dialog creates the Window location field.
Specify via input port creates an position input (Pos) on the
OSD block which accepts the location of the window as data.

DM643x Video Display

Window location
This parameter appears when you set Window location source
to Specify via dialog. Set the pixel width, height, and base
coordinates. For example, the default values, [360, 240, 100, 100]
set the width to 360 pixels, the height to 240 pixels, the base
coordinates for x to 100 pixels, and the base coordinates for y to
100 pixels.

Note [0, 0], the origin of the coordinate system, is the located in
the upper-left corner of the VideoO window.

Horizontal zoom
Set the horizontal magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the video display block.

Vertical zoom
Set the vertical magnification of the graphics display window.
Selecting Specify via input port creates a zoom input (Zoom)
on the video display block.

Show input port for enable control

Create an input port (En) to enable or disable the video display
window.

7-301

DM643x Video Display

Video Encoder Pane

E! Sink Block Parameters: ¥ideo Display |

" Davinc Yideo Display [mazk] [link)

Configures Video Proceszsing Back End [WPEE] to dizplay MTSC/PAL videa.
Yideo] window can only be uzed if Yideol is already configured and used,

window Configuration Video Encoder

Viden display mode: [NTSC

Led Lo

Analog video output: ICDmposite

[~ Enable horizontal 948 expansion
[~ Enable vertical £/5 expansion

ak Cancel | Help | Lpply |

Video display mode
Set the video format to NTSC , PAL, HD 480p60, or HD 576p50.

Analog video output
Set the output type to Composite, S-video, or Component.

Enable horizontal 9/8 expansion
Expands the image horizontally. Typically used to compensate for
spatially compressed NTSC and PAL video signals. For example,
use this setting to correct a 720 x 480 pixel NTSC analog video
input that is displayed as a 640 x 480 pixel image.

Enable vertical 6/5 expansion
Expands the image vertically. Typically used to compensate
for spatially compressed PAL video signals. For example, use
this setting in combination with the Enable horizontal 9/8
expansion setting to correct a 720 x 576 pixel PAL analog video
input that is displayed as a 640 x 480 pixel image.

7-302

DM643x Video Display
|

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

7-303

DM648 EVM Video Capture

Purpose Configure DSP peripherals to capture NTSC/PAL or HD video
Library “DM648 EVM (dm648evmlib)” on page 6-8
Description This block configures the Video Processing Back End (VPBE) to capture

NTSC, PAL, or HD video.
DMEAZEVM |

To capture multiple video data streams for applications such as
multipicture displays, use multiple Video capture blocks. For NTSC
and PAL, you can capture eight video streams by combining four

Video Capture Capture ports with two Capture channels. For HD, you can capture
two video streams using two Capture ports.

Dialeg x

—DMB48EVM Video Capture {mask) {link)

Ch

T

Video Capture Cr

Configures DSP peripherals to capture NTSC/PAL or HD video.

—Parameters

Video capture mode: |P-JT SC 480i30 |

Capture port: |'-.-'PII| ;I

Capture channel: [EXNGRIRNUIIIINS—_~

Sample time;

1/30.0

QK Cancel | Help |

Video capture mode
Set the video format to NTSC, PAL, or HD. Each menu item
gives the encoding type, the vertical lines of resolution, whether
the scanning type is interlaced (i) or progressive (p), and the
frame rate of the input. For example, the “NTSC 480130” indicates
NTSC encoding, 480 lines of vertical resolution, interlaced, and 30
frames per second.

7-304

DM648 EVM Video Capture

See Also

Capture port
Select the video input port. When you configure Video capture
mode for an NTSC or PAL input, four capture ports become
available. When you configure Video capture mode for an HD
input, two capture ports become available. VP1 is not available in
the list of capture ports because it is reserved for video display.

Capture channel
Two capture channels, A and B, are available for NTSC or PAL.
Capture channel is not available when Video capture mode
is configured for an HD input.

Sample time
Set the interval between samples in fractions of a second. This
value defaults to 1/30.0, or one-thirtieth of a second. If the sample
time does not match the frame rate of the video input, some
irregularities may occur.

DM648 EVM Video Display

7-305

DM648 EVM Video Display

Purpose
Library

Description

h DS EV A
Chb

Cr wideo Display

Wideo Display

Dialog
Box

7-306

Configure DSP peripherals to display NTSC, PAL, HD, or VESA video
“DM648 EVM (dm648evmlib)” on page 6-8

This block configures the Video Processing Back End (VPBE) to display
NTSC/PAL/HD/VESA video. When sending the video output to a
computer display, verify that the combination of the resolution of the
VESA in Video display mode and the frequency in Refresh rate are
valid settings for the monitor. Using unsupported combinations may
permanently damage the computer display connected to a video output.

m sink Block Parameters: Video Display il

—DME43EVM Video Display {mask) {ink)

Configures DSP peripherals to display NTSC/PALMHD/NVESA video,

—Parameters

Viden display mode: [j==Nesiel:) -

Refresh rate: |-5|J Hz x|

Video position {relative to upper left corner):

| [0, 0]

04 Cancel | Help | Apply |

Video display mode

Set the video display mode to NTSC, PAL, HD, or VESA. The
NTSC, PAL, and HD menu items give the encoding type, the
vertical lines of resolution, whether the scanning type is interlaced
(1) or progressive (p), and the frame rate of the input. For example,
the “NTSC 480i30” indicates NTSC encoding, 480 lines of vertical
resolution, interlaced, and 30 frames per second. The VESA
modes correspond to a range of standard computer display modes.

DM648 EVM Video Display

See Also

Refresh rate
When Video display mode is one of the VESA modes, set the
refresh rate of the video output.

Video position
Position the upper-left corner of the video output in the video
display by entering coordinates. The default coordinates, [0,0],
correspond to the upper-left corner of the video display. Increasing
the horizontal and vertical coordinates moves the video output
to the right and down.

DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

7-307

C6747EVM ADC

Purpose Capture audio stream from LINE IN jack
Library “C6747 EVM (c6747evmlib)” on page 6-5
Description Configures the AIC31 audio codec on the C6747EVM board to capture

an audio stream from the LINE IN jack. Output is a [Nx2], N being

ETATEVH the number of samples per frame, array of int16 values representing

Sutk the left and right channels of the sampled signal. Use Inherit sample
ADC time parameter to place the ADC block in an asynchronous function
Pt call subsystem.

Dialog x|

Box —C6747EVM ADC (mask) (ink)

Configures the AIC31 audio codec on the C&747EVM board to
capture an audio stream from the LINE IN jack. Qutputis a [Nx2],
M being the number of samples per frame, array of int16 values
representing the left and right channels of the sampled signal. Use
Inherit sample time parameter to place the ADC block in an
asynchronous function call subsystem.

—Parameters

Sampling rate: |3 kHz LI
Samples per frame:

2

[~ Inherit sample time

Cancel | Help |

Sampling rate
Set the rate at which the analog-to-digital converter samples the
analog input. A higher rate increases the resolution of the data
the ADC outputs.

7-308

C6747EVM ADC

Samples per frame
Set the number of samples the ADC buffers internally before it
sends the digitized signals, as a frame vector, to the next block
in the model. This value defaults to 64 samples per frame. The
frame rate depends on the sample rate and frame size. Thus, if
you set Sampling Rate to 8 kHz, and Samples per frame to 64, the
resulting frame rate 1s 125 frames per second (8000/64 = 125).

Inherit sample time
Select whether the block inherits the sample time from the
model base rate or from the Simulink base rate. You can locate
the Simulink base rate in the Solver options in Configuration
Parameters. Selecting Inherit sample time directs the block to use
the specified rate in model configuration. Entering -1 configures
the block to accept the sample rate from the upstream Interrupt,
Task, or Triggered Task blocks.

See Also C6747EVM DAC

7-309

C6747EVM DAC

Purpose
Library

Description

CETATEVM

DAC

DAaC

Dialog
Box

7-310

Output audio on LINE OUT / HP OUT jacks
“C6747 EVM (c6747evmlib)” on page 6-5

Configures the AIC31 audio codec on the C6747EVM board to output
audio on LINE OUT / HP OUT jacks on the board.Input must be a [Nx2]
array of int16 values representing the left and right channels of the
sampled signal. Sampling rate and samples per frame of the DAC must
match the sampling rate and samples per frame of the ADC block.

x

—CB747EVM DAC (mask) (link)

Configures the AIC31 audio codec on the C6747EVM board to output audio on LINE
QOUT { HP OUT jacks on the board.Input must be a [Mx2] array of int16 values
representing the left and right channels of the sampled signal. Sampling rate and
samples per frame of the DAC must match the sampling rate and samples per frame
of the ADC blodk,

—Parameters

Sampling rate: |Inherit from ADC ;I

Samples per frame:

64

Apply

oK Cancel |

Sampling rate
Set the rate at which the digital-to-analog converter receives each
data sample. If your model contains an ADC block, select Inherit
from ADC.

C6747EVM DAC
|

Samples per frame
Set the number of samples per data input frame. Match this value
with the value of the block creating the data frames. This value
defaults to 64 samples per frame.

See Also DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

7-311

C6747EVM DIP Switch

Purpose

Library

Description

DIP Switch

CevavEVM

Ot

DIP Switch

Dialog
Box

See Also

7-312

Output DIP switch status
“C6747 EVM (c6747evmlib)” on page 6-5
Outputs on / off state of a DIP switch on the C6747EVM board. The

output value is boolean, that is ’0’ or '1’, depending on the state of the
switch.

x

—C&ET47EVM DIP Switch (mask) (ink)

Cutputs on j off state of a DIP switch on the C6747EVM board.
The output value is boolean, thatis '0' or '1', depending on the
state of the switch,

—Parameters

DIP switch: |5w3(0) |

Sample time:

1

Cancel | Help |

DIP Switch
Select the switch, 0 through 3, from the SW3 bank of switches.

Sample time
Specify the time between samples of the signal in seconds. This
value defaults to 1 second between samples.

DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,
DM643x Video Capture

C6747EVM LED

Purpose
Library

Description

CET4TEVM

LED

LED

Dialog
Box

See Also

Control four on-board LEDs

“C6747 EVM (c6747evmlib)” on page 6-5

Controls the DS1-DS4 LEDs on the C6747EVM board. The input is a
boolean signal. The input signal value will be reflected on the LED

selected.

x

— CA74TEVM LED {mask) {link)

Controls the DS1-D54 LEDs on the C&747EVM board, The input is a boolean signal.
The input signal value will be reflected on the LED selected.

—Parameters

LED: D51

—

Cancel | Help | Apply |

LED

Specify the number of the User LED that the Boolean input

controls.

DM643x Draw Rectangles, DM643x OSD, DM6437 EVM Video Capture,

DM643x Video Capture

7-313

DSP/BIOS Hardware Interrupt

Purpose Generate Interrupt Service Routine
Librclry “DSP/BIOS (dspbioslib)” on page 6-8
Description Creates an Interrupt Service Routine (ISR) that executes the task block

or subsystem that is downstream from the block. ISRs are functions
that the CPU executes in response to an external event.

DSPR/BIOS
Hs.d.ﬁ.sH,:’:nE,,um Interrupt numbers for C6000 family processors range from 0 to 15,
with 0 reserved for the reset ISR. The following table presents the
set of interrupt numbers for the C6713 processor. For more detailed
and specific information about interrupts, refer to Texas Instruments
technical documentation for your target processor.

Interrupt

Number Default Event Module

0 Reset

1 NMI

2 Reserved

3 Reserved

4 GPINT4 GPIO

5 GPINTS5 GPIO

6 GPINT6 GPIO

7 GPINT7 GPIO

8 EDMAINT EDMA

9 EMUDTDMA Emulation
10 SDINT EMIF

11 EMURTDXRX Emulation
12 EMURTDXTX Emulation
13 DSPINT HPI

7-314

DSP/BIOS Hardware Interrupt

Dialog
Box

Interrupt

Number Default Event Module
14 TINTO Timer O
15 TINT1 Timer 1

] source Block Parameters: Hardware 1

In models, you usually follow this block with either a DSP/BIOS Task or
DSP/BIOS Triggered Task block, or a subsystem function call block.

—DSR/BIOS Hvl Block (mask)

Create Interrupt Serdce Routine which will execute the
daownstream subsystem or Task Block.

—Parameters

Interrupt number(s):

[5 6]

Preemption flag(s): preemptable-1, non-preemptable-0

[01]
¥ hansge own timer

Timer resolution (seconds):

[1/1000

[Enahle simulstion input:

[0 I Cancel

Help

Interrupt number(s)

Enter one or more integer values as a vector that represent
interrupts. Interrupts have any value from 0, the highest priority
to 15, lowest priority. As shown, enter the values enclosed in
square brackets. For example, entering

[3 5 15]

7-315

DSP/BIOS Hardware Interrupt

7-316

results in three interrupt routines. [5 8] is the default entry,
specifying two interrupts.

Preemption flag(s)

Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of
the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value here, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 5
in Interrupt numbers is not preemptible and the priority 8
interrupt can be preempted.

Manage own timer

The ISR generated by the this block can manage its own time by
reading time from the clock on the board. Selecting this option
directs the ISR to maintain the time itself. When you select
Manage own timer, you enable the Timer resolution option
that reports the timer resolution the ISR uses.

Timer resolution (seconds)

When you direct the block to manage its own time, this option
(available only when you select Manage own timer) reports
the resolution of the clock. Timer resolution is a read-only
parameter. You cannot change the value.

Enable simulation input

Selecting this option adds an input port to the block for simulating
inputs in Simulink software. Connect interrupt simulation
sources to the input. This option affects simulation only. It does
not affect generated code.

DSP/BIOS Hardware Interrupt
|

See Also DSP/BIOS Task, DSP/BIOS Triggered Task

7-317

DSP/BIOS Task

Purpose Create task that runs as separate DSP/BIOS thread

Library “DSP/BIOS (dspbioslib)” on page 6-8

Description Creates a free-running task that runs in response to an ISR and as a
— separate DSP/BIOS thread. The spawned task runs the downstream

o function call subsystem in the model.
i:(When the process runs this task, it uses a semaphore structure to
enable the task and restrict access by it to other resources.
Dl°|°9 E! Source Block Parameters: T ': il
BOX —D3SP/BIOS Free-running Task Block (mask)

Creates a Task function which is spawned as a
separate DSF/BIOS Task. The Task function runs the
code of the downstream function-call subsystarm.
“When this block is run, a semaphore is used to enable
the task execution.

—Farametars

Task narme (32 characters ar less):

Task priority (1-15):
[

Stack size (bytes):
4096

stack memaory segment:
|SDRAM

v Manage own timer:

Tirer resolution (secands)
[1/1000

(B4 I Cancel Help

7-318

DSP/BIOS Task

See Also

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters,
including numbers and letters as needed. You cannot use the
standard C reserved characters, such as / and : in the name.

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15
the highest. Higher priority tasks can preempt tasks that have
lower priority.

Stack size (bytes)
Specify the size of the stack the task uses. The value defaults
to 4096 bytes.

Stack memory segment
Specify where the stack resides in memory.

Manage own timer
This block can manage its own time by reading time from the
clock on the board. Selecting this option directs the task/block to
maintain the time itself. When you select Manage own timer,
you enable the Timer resolution option that reports the timer
resolution the task uses.

Timer resolution (seconds)
When you direct the block to manage its own time, this option
(available only when you select Manage own timer) reports
the resolution of the clock. Timer resolution is a read-only
parameter. You cannot change the value.

DSP/BIOS Hardware Interrupt, DSP/BIOS Triggered Task

7-319

DSP/BIOS Triggered Task

Purpose
Library

Description

DSR/BIOS

TSK
Triggered Task

Dialog
Box

7-320

Create asynchronously triggered task
“DSP/BIOS (dspbioslib)” on page 6-8

Creates a task that runs asynchronously in response to an ISR and as a
separate DSP/BIOS thread. The spawned task runs the downstream
function call subsystem in the model.

When the process runs this task, it uses a semaphore structure to
enable the task and restrict access by it to other resources.

E! Function Block Parameters: Triggered ; il
—DSP/BIOS Triggered Task Block (mask)

Creates a Task function which is spawned as a separate DSF{BIOS
Task. The Task function runs the code of the downstream
function-call subsystem. When this block is run, a semaphaore is
uged to enable the task execution.

—Farameters

Task name (32 characters or less):

Task priarity (1-15):
B

Stack size (bytes):
4096

Stack memory segment:
|SDRAM

¥ Synchronize the data transter of this task with the caller task

Ok I Cancel | Help | Apply

Task name (32 characters or less)
Creates a name for the task. Enter a string of up to 32 characters,
including numbers and letters as needed. You cannot use the
standard C reserved characters, such as/ or : in the name.

DSP/BIOS Triggered Task

See Also

Task priority (1-15)
Sets the priority for the task, where 1 is the lowest priority and 15
the highest. Higher priority tasks can preempt tasks that have
lower priority, unless the preemptible flag (Preemption flag
option on the C5000/C6000 Hardware Interrupt block) prevents
preempting the task.

Stack size (bytes)
Specify the size of the stack the task uses. The value defaults to
4096 bytes. Take care to set the stack size as large as necessary.
If the task uses more than the allotted space it can write into
other memory areas with unintended results.

Stack memory segment
Specify where the stack resides in memory by specifying the
memory segment. Additional information about DSP/BIOS
memory segments also appears in the Target Preferences block
in the model.

Synchronize data transfer of this task with caller task
Specify whether this task should synchronize data transfer with
the calling task. Select this option to enable synchronization.
Clearing this option enables the Timer resolution option.

Timer resolution
When you direct the block not to synchronize data with the calling
task (by clearing Synchronize data transfer of this task with
caller task), Timer resolution reports the resolution of the
timer. Timer resolution is a read-only parameter. You cannot
change the value.

DSP/BIOS Hardware Interrupt, DSP/BIOS Task

7-321

UDP Receive

Purpose

Library

Description

7-322

HOST

UDFP Recaive

i p

=g

UDFP Recaive

Receive uint8 vector as UDP message
Host Communication (hostcommlib)

A UDP message comes into this block from the transport layer. The
block passes the message to the next downstream block. One block
output provides the data vector from the message. The second output is
a flag that indicates when a new UDP message is available.

Models can contain only one UDP Receive block.

This block issues a function call from the fcn port when a new UDP
packet becomes available. At the same time, it updates the signal going
out of the msgport with the contents of the UDP packet. It reads a single
UDP packet every sample hit. It does not attempt to receive multiple
UDP packets to fill the output vector.

If the UDP packet size is greater than the output port width parameter,
the system truncates the UDP messages at the Msg port. As a result,
the system discards the part of the UDP packet that does not fit into the
Msg port. The system cannot recover discarded message content.

In some cases, the UDP packet size is smaller than the Msg port width.
When this condition occurs, the portion of the output vector that does
not fit into the specified size processes as invalid data.

UDP Receive

Dialog
Box

=] 5ource Block P

x|

— UDP Receive [mazk] [link]

Receive UDP packets from indicated IP address and IP port. Set
output port width parameter to the maximum expected UDP
packet size. Thiz blocks izsues a function call at port 1 whenewver
a new UDP packet iz available.

r— Parameter

|IP address to receive from [D.%.D to accept all):

[nooo

IP part ta receive from:

[25000
COutput port width (bytez):

f1

UDP receive buffer size [bytes]):

a9z

Sample time [zeconds):
0ot

0K I Cancel | Help

IP address to receive from (0.0.0.0 to accept all)
Specifies the IP address from which the block accepts messages.
Setting the address 0.0.0.0 configures the block to accept messages
from any IP address. Setting a specific address, instead of the
default value, 0.0.0.0, directs the block to accept messages from

the specified address only.

IP port to receive from

Specify the port the block accepts messages from on this machine.
The other end of the communication, usually a UDP Send block,
sends messages to this port. The value defaults to 25000, but

the values range from 1-65535.

7-323

UDP Receive

See Also

7-324

Output port width (bytes)
Specifies the width of messages that the block accepts. When you
design the transmit end of the UDP communication channel, you
decide the message width. Set this option to a value as large or
larger than any message you expect to receive.

UDP receive buffer size (bytes)
Specify the size of the buffer to which the system stores UDP
messages. The default size is 8192 bytes. Make the buffer
large enough to store UDP messages that come in while your
process reads a message from the buffer or performs other
tasks. Specifying the buffer size prevents the receive buffer from
overflowing.

Sample time (seconds)
Use this option to specify when the block polls for new messages.
Enter a value that is greater than zero. Setting this option to a
large value reduces the likelyhood of dropped UDP messages. By
default, the sample time is 0.01 s.

Byte Pack, Byte Reversal, Byte Unpack, UDP Send

UDP Send

Purpose
Library

Description

TDE
Send

Send

Dialog
Box

Send UDP message
Host Communication (hostcommlib)

The UDP send block receives a uint8 vector that it sends as a UDP
message to the host. Input must be in the form of a uint8 vector with
UDP format.

Models can contain only one UDP Send block.

E! Sink Block Parameters: Send il
—LIDF Send (mask)

Send a lUOR packet to a remote interface identified by the IP
address and |F port parameters. Setuse local IF port parameter if
the remote interface is expecting data from a particular local port.

—Farameters

IF address to send to (265 255266 255 for broadcast):
55 255 255

ER

)
raga]

Remote IP portto send tao:
|25000

Use local IF paort (-1 for automatic port assignment):
1

Sample time (seconds):

0.01

0K I Cancel | Help | Al |

IP address to send to (255.255.255.255 for broadcast)
Specify the IP address to which the block sends the message.
To broadcast the UDP message, retain the default value,
255.255.255.255.

7-325

UDP Send

IP port to send to
Specify the port to which the block sends the message. Port
numbers range from 1 to 65535. Configure the network port
receiving the UPD messages with the same port number.

Use the following local IP port
Specify the local IP port the block sends the message from.
Entering -1 (the default value) for this option allows the network
to select automatically the local IP port to use to send the message.

If the address you are sending to expects the message to come
from a specific port, enter that port address. If you enter a port
number in the UDP Receive block option IP port to receive
from, enter that port identifier instead of the port address.

Sample time
Sample time tells the block how long to wait before polling for
new messages.

See Also Byte PackByte Reversal, Byte Unpack, UDP Receive

7-326

Hardware Issues

¢ “Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP” on page
A-2

¢ “Requirements for the DM642 EVM” on page A-3
¢ “Installing and Configuring the Avnet Board Support Library” on page A-6
¢ “Continuing Issues with Target Support Package Software” on page A-9

A Hardware Issues

Configuring the D.signT DSK-91C111 to Use TCP/IP and
UDP

Specific evaluation boards that don’t have a build-in Ethernet ports accept
the D.signT DSK-91C111 daughter card with the required Texas Instruments
TMS320C6000 TCP/TP Stack. To use the D.signT DSK-91C111, change the
position of solder point jumper JPINTPOL. Set the jumper to the “b” position
from the default “a” position. Refer to your TI TCP/IP Stack User’s Guide
documentation for additional information about configuring the daughter
card.

Requirements for the DMé42 EVM

Requirements for the DM642 EVM

In this section...
“Identifying Your DM642 EVM Board Version” on page A-3

“Installing Third-party Software” on page A-3

“Configuring the Target Preferences Block for Your DM642 EVM” on page
A-4

“Configuring the DM642 EVM Video ADC Block” on page A-5

This section provides details about using both the DM642 EVM hardware
target and the simulator.

Identifying Your DM642 EVM Board Version
Spectrum Digital has released three versions of the DM642 EVM board:

¢ Version 1 — Original board with 600 MHz DM642, Philips SAA7115 video
decoders. ASSY 506840 Rev. D on back of board, 50 MHz oscillator.

® Version 2 — Original board revised to use 720 MHz DM642, Philips
SAA7115 video decoders. ASSY 506840 Rev. D on back of board, 60 MHz
oscillator.

e Version 3 — Revised board with 720 MHz DM642, T1 TVP5146/5150
video decoders and HD filters. ASSY 507340 Rev. B on back of board, 60
MHz oscillator.

To determine the board version, consult the documentation provided with your
board, or refer to the ASSY number located on the bottom surface of the board.

Installing Third-party Software

After determining the board version, install the supported versions of the
third-party software for that board version. See the “System Requirements”
on page 1-7 for the Target Support Package software.

A Hardware Issues

Configuring the Target Preferences Block for Your
DM642 EVM

When you use the DM642EVM V1, V2, and V3 Target Preferences block,
make sure that you enter the CPU clock speed that matches the CPU clock
on your board. The figure below shows the correct setting of 600 for Version
1 boards in CPU clock speed (MHz). For Version 2 and 3 boards, change
the clock speed to 720.

) Target Preferences',DME

Boardlnfol Memoty | Sections | DSP.!BIOS'

Board propetties

Board type: 5ME42EVM WM
Processor: IDME42 vI Aulel ey | Ediit. ... | [elete

=101]

CPU clock: I 00 MHz

[~ Simulstor [~ Emable High-Speed RTDX

Code generation =upport

Operating system: IDSPJ’BIOS i I

Eoard custom code

[
| |
Code Composer Studio Setup
CCS Board name: |F281 2eldsp j
Processar name: ICpu—D d

OK I Apply Cancel Help I

Requirements for the DM642 EVM

Configuring the DM642 EVM Video ADC Block

If you have a DM642 EVM Version 2 or 3 board, make sure that you have the
updated video drivers in your CCS IDE installation folder and that you select
the correct decoder type TVP5146 when you use DM642 EVM Video ADC
blocks as shown in the following figure.

=] source Block Parame |

— DME42 EVM Video ADC [mask] [link]

Caonfigures the DEA2 BV board peripherals and on-board video decoder device to
1eceive a stream of videa data from the input video part. The output of the Block iz a
stream of 8-bit per pikel image frames captured fram the input analog video stream.
Interlaced frames are combined ta form one progressive image at the output parts.

— Parameter:

Decoder bype: ISMN 15

Input port; IF'l:nlt i]

Mode: [MTSC

Analog video input: Il:ompnsite

Output zize: |?2D>:48EI

Output format; IYCbl:r

Ll Lef Ll L L] L] L

Data order: IFicuw major

[Inherit sample time

QK I Cancel Help

A-5

A Hardware Issues

Installing and Configuring the Avnet Board Support
Library

In this section...

“Preface” on page A-6

“Installing the Avnet Board Support Library” on page A-6
“Setting the MATLAB Environment” on page A-6

“For Spectrum Digital DM6437EVM Users” on page A-7

“Verifying Your Installation ” on page A-8

Preface

The Avnet S3ADSP DaVinci evaluation platform is designed for joint software
and hardware design. It brings the Texas Instruments TMS320DM6437 DSP
and Xilinx Sparta-3A FPGA together. This chapter provides an overview of

the board, and instructions for installing, configuring, and using the Avnet
S3ADSP DM6437.

Installing the Avnet Board Support Library

Download and install the current Avnet Board Support Package for Simulink
(Avnet BSL), available from the Avnet Web site, www.avnet.com. Doing so
creates environment variables that the Target Support Package software
uses to locate files in the Avnet BSP.

Make a note of the installation folder for the Avnet BSL.

Setting the MATLAB Environment

The Target Support Package software uses environment variables to locate
files in the Avnet BSP.

The MathWorks utility, setTgtEnv.m, automatically maps the following
environment variables (where <Avnet BSL> is the Avnet BSL installation
folder):

http://www.avnet.com

Installing and Configuring the Avnet Board Support Library

e PSP_EVMDMG6437_INSTALLDIR: must be mapped to “<Avnet BSL>\psp”

e CSLR_DM6437_INSTALLDIR: must be mapped to “<Avnet BSL>\
psp\pspdrivers\soc\dm6437\dsp\inc”

e NDK_INSTALL_DIR: must be mapped to “<Avnet BSL>\ndk”

Run setTgtEnv by entering the following command at the MATLAB command
prompt: setTgtEnv('avnet_s3adsp_dm6437')

If you installed the Avnet BSL prior to installing the MathWorks BSL, the
utility detects the AVNET_S3ADSP_DM6437_INSTALLDIR environment
variable created by the Avnet BSL installer. It will automatically

set the environment variables above based on the path stored in the
AVNET_S3ADSP_DM6437_INSTALLDIR environment variable. On a
successful run, you should see the following messages printed on the MATLAB
command window:

Setting environment variable "PSP_EVMDM6437_INSTALLDIR" to
C:\avnet_s3adsp_dm6437_1_06\psp"

Setting environment variable "CSLR_DM6437_INSTALLDIR" to
C:\avnet_s3adsp_dm6437_1_06\psp\pspdrivers\soc\dm6437\dsp\inc"

Setting environment variable "NDK_INSTALL_DIR" to
C:\avnet_s3adsp_dm6437_1_06\ndk"

If automatic mapping fails for any reason, the script will prompt you to browse
for the “avnet_s3adsp_dm6437_version.txt” file stored in the top-level Avnet
BSL installation folder. If so, browse for the file and click the Open button.
This will set the required environment variables.

For Spectrum Digital DM6437EVM Users

If you have a Spectrum Digital DM6437EVM board together with an

Avnet S3ADSP DM6437 board, setting environment for the Avnet board as
explained in section 2.3 will override DM6437EVM environment setup. To
revert back to DM6437EVM environment after using Avnet board, execute
the following at the MATLAB command prompt: setTgtEnv('dm6437evm')

A Hardware Issues

Follow the instructions printed on the MATLAB command window to complete
environment configuration. To go back and forth between DM6437EVM
environment and Avnet S3ADSP DM6437 environment, use the setTgtEnv
script with the appropriate platform name specified as the argument.

Verifying Your Installation

Open the Avnet S3ADSP Board Support Library by entering the following
command at the MATLAB command prompt: avnet_s3adsp_dm6437 This
opens the Avnet Spartan-3A DSP DaVinci Evaluation Platform Board
Support Library. You have completed installing and configuring the
MathWorks and Avnet Board Support Libraries. You are ready to start using
the Avnet S3ADSP DaVinci evaluation platform.

Continuing Issues with Target Support Package™ Software

Continuing Issues with Target Support Package Software

This section details some target operations that you should know about as you
use Target Support Package software.

In this section...
“Setting the Clock Speed on the C6713 DSK” on page A-9

“Simulink Stop Block Works Differently When Not Using DSP/BIOS
Features” on page A-10

“Installing Third-Party Target Support Packages” on page A-10

Setting the Clock Speed on the C6713 DSK

The C6713DSK PLL is not automatically set to the correct CPU Clock
frequency when you try to target the board. When you power-up your DSK, it
runs at a clock speed of 50 MHz. However, the C6713 is capable of running
at 225 MHz.

If you generate code incorporating the DSP/BIOS real-time operating system,
the PLL is automatically configured for you at run-time to use the correct
clock speed. If you are not using DSP/BIOS in your project, you must
manually configure the PLL to the correct clock rate before running your code.

Setting the PLL to Drive the CPU at 225 MHz

To set the C6713 DSK PLL to drive the CPU at 225 MHz, perform the
following steps. Be sure you have defined your GEL file for your DSK in the
Setup Utility for CCS IDE.

1 Launch Code Composer Studio.
2 Open your C6713 DSK project with the GEL file.

3 Select GEL > Resets > InitPLL from the menu bar in CCS IDE.

To make this happen whenever you open Code Composer Studio to use
your C6713 DSK, edit the file \ti\cc\gel\dsk6713.gel. Add the following
command to the StartUp() function:

A Hardware Issues

A-10

init_pll();

This tells the GEL file to initialize the PLL to operate at 225 MHz.

On the DM642 EVM, ADC-DAC Loopback Does Not Display An
RGB Image Correctly After Power-Up

When you set up the DM642 EVM to use loopback from the ADC to the DAC,
the DAC block does not reproduce the captured image correctly immediately
after you power up the board. Colors in the image are not shown correctly.

To get a clean image, reload the program to the target and run the program
again. This also happens with the examples Texas Instruments ships with
the DM642 EVM product.

Simulink Stop Block Works Differently When Not
Using DSP/BIOS Features

If you are using the Simulink Stop block in your model, but you are not using
DSP/BIOS features, your model might take longer to stop when it is running
on the target than if you are using DSP/BIOS.

The condition the model uses to detect the stop processing flag is different
when you do not use DSP/BIOS. The result is that the model may not detect
and respond to the flag as promptly, taking longer to stop the running model
on the target.

Installing Third-Party Target Support Packages

For a list of required third-party target support packages, with version
numbers, see the Target Support Package System Requirements page at
http://www.mathworks.com/products/target-package/requirements.html.

When you install any of the third-party target support packages listed below,
perform a default installation using the installation path provided for that
package and perform any additional steps given.

This documentation uses placeholders for portions of the installation
path that may vary by software version or environment. Please
replace the placeholders with the correct path information for your

http://www.mathworks.com/products/target-package/requirements.html

Continuing Issues with Target Support Package™ Software

software environment. For example, if the CCS IDE installation path is
C:\CCStudio_v3.3, then enter C:\CCStudio_v3.3\boards\evmdmé42 instead
of <CCStudio_vn.n>\boards\evmdm642.

Placeholders:

® <CCStudio_vn.n>— The installation path for Code Composer Studio

® <n.n> — Version-specific path information

Note If you do not use the installation paths provided, update the Libraries
and Include paths parameters in the Target Preferences and C6000 IP
Config blocks of the Target Support Package™ software with the correct
paths. Otherwise, the software produces error messages when you attempt
to generate code.

DM642EVM Version 3 Board

® Spectrum Digital EVMDM642 Board Support Package —
<CCSvn.n>\boards\evmdmé42

e TT's Network Developer’s Kit (NDK) — <CCSvn.n>\C6000\NDK

DM642EVM Version 1 & 2 Boards

¢ Spectrum Digital EVMDM642 Board Support Package —
<CCSvn.n>\boards\evmdm642
¢ Device Driver Developer’s Kit (DDK) — <CCSvn.n>\ddk

¢ TT's Network Developer’s Kit (NDK) — <CCSvn.n>\C6000\NDK

DM6437EVM

e Spectrum Digital DM6437EVM DVSDK RTM — Install anywhere.
TI recommends using the root path of your main drive. For example,
C:\dvsdk_<n.n>

A-11

A Hardware Issues

A-12

Also, set the following environment variables, replacing DVSK with the
DVSDK installation path (e.g., C:\dvsdk_<n.n>).

The first time you generate code, the Target Support Package™ software
prompts you to locate specific files in the DVDSK folders and creates
environment variables mapped to the location of required folders.

For example, the application creates an environment variable called
CSLR_DM6437_INSTALLDIR for the path of the Register Layer Chip
Support Library.

C6455DSK

Spectrum Digital DSK6455/EVM6455 Target Content Package —
<CCSvn.n>\boards\dsk6455_v<n.n>

Network Developer’s Kit NDK — <CCSvn.n>\C6000\NDK
C6727PADK

Lyrtech’s PADK Software — Install anywhere.

TTs C672x Chip Support Libraries (CSL) — Extract all three C672x CSL
components from sprc223.zip to <CCSvn.n>\boards\C6727PADK.

TTs System Patch Code, FastRts(V<n.n>)/DSPLIB (V<n.n>) —
<CCSvn.n>\boards\C6727PADK\sprc203

After installation, the path structure for the C672x CSL libraries should
resemble the following figure:

Continuing Issues with Target Support Package™ Software

% C applications' CCStudio_v3.3\ boards\C6T2 TPADK ;] =10 =
He [Wew Fyoes ok beh B) | &
| [e Bl |
Qw O 3§ a5 5 X 9T |
Agress [C:\ApplicationsiCCStudio_v3. 31boards\CE727PADK B |
Folders xl Name = I
;i esd C572x
| 'Syl _Co72x_inke
|| (e _CB72x_sre
|| Sspecans
=D esl_CBT72x_intc
= D dsp
I doc
4 L) examples
) inc
&b
B esl_CB72x_src
1) SystemPatch
I TMS320067 2:xxBootLitils
& 1) UsingROMApplications
1D drivers
HL M dekssitn id | K1l | i

The PADK Software installer automatically sets the PADK_DIR environment
variable with the correct installation path.

The first time you generate code, the Target Support Package™
software prompts you to locate the following files under
<CCSvn.n>\boards\C6727PADK\ and sets the environment
variables accordingly:

® $(CSL_C672x_INSTALLDIR)\lib\csl C6727.1lib

e $(CSL_C672x_INTC_INSTALLDIR)\1lib\csl C672x_intc.lib

e $(SYSPATCH_C672x_INSTALLDIR)\applySystemPatch.obj

You have completed installation of the third-party target support packages.

A-13

A Hardware Issues

A-14

A

Archive_library 2-52

asynchronous scheduling 2-23

Avnet Spartan 3-A Video Capture 7-293
Avnet Spartan-3A blocks 6-2

block limitations using model reference 2-53
Block Processing block 7-10
block recommendations 2-61
blocks

Avnet Spartan-3A 6-2

C62x 6-9

C6747 6-5

CAN Pack 7-205

CAN Unpack 7-217

DM642 6-6

DM6437 6-6

DM643x 6-2

DM648 6-8

use in target models 2-61
blocks to avoid in models 2-61
build configuration

compiler options, default 2-48

CustomMW 2-48

default 2-48
build folder

contents of 2-71

naming convention 2-65
building models

use C62x DSP Library blocks 4-10
Byte Pack block 7-2
Byte Reversal block 7-5
Byte Unpack block 7-7

C

C6000 Deinterleave 7-20
C6000 EDMA block 7-21

C6000 Interleave 7-30
C6000 IP Config block 7-32
C6000 Library
DM643x UART Config
Host side 7-286
C6000 model reference 2-50
C6000 Target
code generation options 2-44
run-time options 2-46
targeting Code Composer Studio 2-78
C6000 TCP/IP Receive block 7-38
C6000 TCP/IP Send block 7-44
C6000 UDP Receive block 7-47
C6000 UDP Send block 7-51
C62x Autocorrelation block 7-54
C62x Bit Reverse block 7-56
C62x Block Exponent block 7-58
C62x blocks 6-9
C62x Complex FIR block 7-59
C62x Convert Floating-Point to Q.15 block 7-61
C62x Convert Q.15 to Floating-Point block 7-62
C62x DSP Library blocks
building models 4-10
choosing blocks to optimize code 4-11
common characteristics 4-4
Q format notation 4-6
using source and sink blocks 4-11
C62x FFT block 7-63
C62x General Real FIR block 7-65
C62x LMS Adaptive Filter block 7-67
C62x Matrix Multiplication block 7-71
C62x Matrix Transpose block 7-75
C62x Radix-2 FFT block 7-76
C62x Radix-2 IFFT block 7-78
C62x Radix-4 Real FIR block 7-80
C62x Radix-8 Real FIR block 7-82
C62x Real Forward Lattice All-Pole IIR
block 7-84
C62x Real IIR block 7-86
C62x Reciprocal block 7-89

Index-1

Index

C62x Symmetric Real FIR block 7-90

C62x Vector Dot Product block 7-95

C62x Vector Maximum Index block 7-96

C62x Vector Maximum Value block 7-97

C62x Vector Minimum Value block 7-98

C62x Vector Multiply block 7-99

C62x Vector Negate block 7-100

C62x Vector Sum of Squares block 7-101

C62x Weighted Vector Sum block 7-102

C6416 DSK ADC block 7-104

C6416 DSK DAC block 7-108

C6416 DSK DIP Switch block 7-111

C6416 DSK LED block 7-116

C6416 DSK Reset block 7-118

C6455 DSK ADC block 7-119

C6455 DSK DAC block 7-121

C6455 DSK DIP block 7-122

C6455 DSK LED block 7-124

C6455 DSK SRIO Config block 7-125

C6455 DSK SRIO Receive block 7-128

C6455 DSK SRIO Transmit block 7-135

C64x Autocorrelation block 7-139

C64x Bit Reverse block 7-141

C64x Block Exponent block 7-143

C64x Complex FIR block 7-144

C64x Convert Floating-Point to Q.15 block 7-146

C64x Convert Q.15 to Floating-Point block 7-147

C64x FFT block 7-148

C64x General Real FIR block 7-150

C64x LMS Adaptive Filter block 7-152

C64x Matrix Multiplication block 7-156

C64x Matrix Transpose block 7-160

C64x Radix-2 FFT block 7-161

C64x Radix-2 IFFT block 7-163

C64x Radix-4 Real FIR block 7-165

C64x Radix-8 Real FIR block 7-167

C64x Real Forward Lattice All-Pole IIR
block 7-169

C64x Real IIR block 7-171

C64x Reciprocal block 7-174

Index-2

C64x Symmetric Real FIR block 7-175
C64x Vector Dot Product block 7-180
C64x Vector Maximum Index block 7-181
C64x Vector Maximum Value block 7-182
C64x Vector Minimum Value block 7-183
C64x Vector Multiply block 7-184
C64x Vector Negate block 7-185
C64x Vector Sum of Squares block 7-186
C64x Weighted Vector Sum block 7-187
C6713 DSK

configure 2-74

confirming proper configuration 2-59

general code generation options 2-42

start/stop models 2-57 2-76

target options 2-37

TLC debugging options 2-41

tutorial about multirate applications 2-63

C6713 DSK ADC block 7-189
C6713 DSK blocks

tutorial 2-63
C6713 DSK DAC block 7-193
C6713 DSK DIP Switch block 7-195
C6713 DSK folders

build 2-64

working 2-64
C6713 DSK LED block 7-200
C6713 DSK Reset block 7-202
C6747 blocks 6-5
C6747EVM ADC 7-308
C6747EVM DAC 7-310
C6747EVM DIP Switch 7-312
C6747EVM LED 7-313
CAN

timing parameters

Bitrate 5-2

CAN Pack block 7-205
CAN Unpack block 7-217
CCS IDE

create projects for the IDE 2-78
Code Composer Studio 2-78

Index

configure your C6713 DSK for Target Support
Package™ 2-74
confirm your C6713 DSK configuration 2-59
convert data types 4-10
CPU Timer block 7-203
custom C6000 target
about 2-84
preferences block 2-84
setup 2-84
custom hardware guidelines 2-80
custom hardware, target 2-80
CustomMW build configuration 2-48
CustomMW compiler options 2-48

D

default build configuration 2-48
default compiler options 2-48
discrete solver 2-35

DM642 blocks 6-6

DM642 EVM Audio ADC block 7-229
DM642 EVM Audio DAC block 7-232
DM642 EVM FPGA GPIO Read block 7-234
DM642 EVM FPGA GPIO Write block 7-236
DM642 EVM LED block 7-252
DM642 EVM Reset block 7-257
DM642 EVM Video ADC block 7-238
DM642 EVM Video DAC block 7-247
DM642 EVM Video Port block 7-253
DM6437 blocks 6-6

DM6437 EVM ADC 7-258

DM6437 EVM DAC 7-260

DM6437 EVM DIP 7-261

DM6437 EVM LED 7-262

DM6437 EVM Video Capture 7-263
DM643x blocks 6-2

DM643x CAN Receive 7-265
DM643x CAN Setup 7-268

DM643x CAN Transmit 7-271
DM643x Draw Rectangles 7-273

DM643x OSD 7-275
DM643x PWM 7-280
DM643x UART Config

Host side 7-286
DM643x UART Receive block 7-289
DM643x UART Transmit block 7-291
DM643x Video Display 7-299
DM648 blocks 6-8
DM648 EVM Video Capture 7-304
DM648 EVM Video Display 7-306
DSP/BIOS

added files 3-10

files removed from project 3-10

to enable 3-25
DSP/BIOS Hardware Interrupt block 7-314
DSP/BIOS Task block 7-318
DSP/BIOS Triggered Task block 7-320
DSP/BIOS, enabling 3-25

enabling DSP/BIOS 3-25
execution in timer-based models 2-24

F

files added to DSP/BIOS project 3-10
files removed from DSP/BIOS projects 3-10
fixed-point numbers 4-5
signed 4-6
fixed-step solver 2-35

G

generate optimized code 2-44

H

hardware 1-7
hardware, custom 2-80

Index-3

Index

hardware, guidelines for using custom
boards 2-80

inaccurate profile information 3-14

initialized memory 2-84

inline Signal Processing Blockset functions
option 2-44

installing software 1-7

M

management, memory 2-84
map memory 2-83
map, memory 2-83
memory
initialized 2-84
management 2-84
map 2-83
section 2-83
segment 2-83
uninitialized 2-84
memory maps 2-83
messages
DM643x 7-266
model execution 2-23
model reference 2-50
about 2-50
Archive__ library 2-52
block limitations 2-53
modelreferencecompliant flag 2-53
setting build action 2-52
target preferences blocks 2-53
using 2-52
model schedulers 2-23
modelreferencecompliant flag 2-53

o

optimization,target specific 2-44

Index-4

optimize code 4-11

P

profile generated code 3-11
profile report
about 3-11
correcting inaccurate profile
information 3-14
CPU clock speed 3-20
maximum percent of interrupt interval (Max
%) 3-20 to 3-21
maximum time spent in this subsystem per
interrupt (Max time) 3-20
number of interrupts counted 3-20
profiling subsystems 3-12
reading 3-18
sample 3-18
STS objects 3-21
timing details 3-13
to generate 3-21
projects, create for CCS IDE 2-78

Q

Q format notation 4-6

Real-Time Workshop solver options 2-35
run the DSK confidence test 2-59

S

sample time

DM643x 7-266
section,memory 2-83
segment, memory 2-83
select blocks for models 2-61
signed fixed-point numbers 4-6
simulator

Index

device cycle accurate 2-5
use simulators for development 2-5
use with DSP/BIOS 2-5
simulators, about 2-5
solver option settings 2-35
source and sink blocks 4-11
supported hardware 1-7
synchronous scheduling 2-24
system requirements 1-7

T

table of blocks to avoid in models 2-61
target Code Composer Studio 2-78
target configuration options
build action 2-46
generate code only 2-41
overrun action 2-47
system target file 2-39
target custom hardware 2-80
target preferences blocks in referenced
models 2-53
target specific optimization 2-44

Target Support Package™
about 1-2

create Simulink® model for targeting 2-

expected background for use 1-3
information for new users 1-3
use C6713 DSK blocks 2-19
timer-based models, execution 2-24
timer-based scheduler 2-24
timing 2-23
tutorial for C6713 DSK blocks 2-63

U

UDP Receive block 7-322

UDP Send block 7-325

uninitialized memory 2-84

use blocks for the C6713 DSK 2-63

use C62x and C64x DSP Library blocks 4-1
use C6713 DSK blocks 2-63

w
working folder 2-64

60

Index-5

	toc
	Getting Started
	Product Overview
	Product Description

	Using This Guide
	Expected Background
	If You Are a New User
	If You Are an Experienced User

	Configuration Information
	Setting Up and Configuring
	System Requirements
	Supported Hardware
	Installing and Configuring Software

	Targeting C6000 DSP Hardware
	Introduction to Targeting
	Overview
	About the Tutorials

	TI C6000 and Code Composer Studio IDE
	Using Code Composer Studio with Target Support Package Software
	Supported Boards and Simulators
	About Simulators

	Typical Hardware Setup for a Development Board

	Targeting Tutorial — Single Rate Application
	Overview
	Building the Audio Reverberation Model
	Adding C6713 DSK Blocks to Your Model
	Configuring Target Support Package Blocks
	Specifying Configuration Parameters for Your Model
	Setting Simulink Configuration Parameters
	Setting Real-Time Workshop Target Build Options
	Building and Executing Your Model on Your C6713 DSK
	Testing Your Audio Reverb Model

	Using the c6000lib Blockset
	Schedulers and Timing
	Timer-Based Versus Asynchronous Interrupt Processing
	Blocks in the DSP/BIOS (dspbioslib) library
	Blocks in the Scheduling (c6000dspcorelib) library
	Blocks in the Embedded IDE Link library for Texas Instruments Co
	Blocks in the Embedded IDE Link Common library (idelinklib_commo
	Synchronous Scheduling
	Asynchronous Scheduling
	Asynchronous Scheduler Examples
	Before
	After
	Model Inside the Function Call Subsystem Block

	Uses for Asynchronous Scheduling
	Free-Running DSP/BIOS Task
	Idle Task
	Hardware Interrupt Triggered DSP/BIOS Task
	Hardware Interrupt Triggered Task

	Scheduling Considerations

	Setting Real-Time Workshop Options for C6000 Hardware
	Setting Real-Time Workshop Pane Options
	Accessing the Options
	Target Selection
	System target file

	Documentation
	Create code generation report
	Launch report automatically

	Build Process
	Custom Storage Class
	Generate code only

	Debug Pane Options
	Optimization Pane Options
	Embedded IDE Link Software Pane Options
	Target Selection
	Code Generation
	Project Options
	Compiler options string
	Linker options string
	System stack size (bytes)
	Runtime
	Build action
	Interrupt overrun notification method
	Interrupt overrun notification function

	Overrun Indicator and Software-Based Timer
	Default Project Configuration — CustomMW
	Default Compiler Build Options in CustomMW

	Model Reference and Target Support Package Software
	Overview
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference with Target Support Package Software
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring Targets to Use Model Reference

	Targeting Supported Boards
	Overview
	Typical Targeting Process
	Targeting the C6713 DSP Starter Kit
	Starting and Stopping DSP Applications on the C6713 DSK

	Configuring Your C6713DSK
	Confirming Your C6713DSK Installation

	Simulink Models and Targeting
	Creating Your Simulink Model for Targeting
	Blocks to Avoid in Your Models

	Targeting Tutorial II — A More Complex Application
	Overview
	Working and Build folders
	Setting Simulation Program Parameters
	Selecting the Target Configuration
	Building and Running the Program
	Contents of the Build folder

	Targeting Your C6713 DSK and Other Hardware
	Overview
	Configuring Your C6713 DSK
	Confirming Your C6713 DSK Installation
	Running Models on Your C6713 DSK
	Starting and Stopping DSP Applications on the C6713 DSK

	Creating Code Composer Studio Projects Without Building
	Introduction
	Creating Projects in CCS IDE Without Loading Files to Your Targe

	Targeting Custom Hardware
	Overview
	Typical Targeting Process
	Memory Maps

	Targeting a Custom Target
	Memory Pane
	Sections Pane
	Physical Memory Options
	Name
	Address
	Length
	Contents
	Add
	Remove
	Create Heap
	Heap Size
	Define Label
	Heap Label
	Enable L2 Cache
	L2 Cache Size

	Sections Pane
	Compiler Sections
	Description
	Placement
	DSP/BIOS Sections
	Description
	Placement
	DSP/BIOS Object Placement
	Custom Sections
	Name
	Placement
	Add
	Remove

	To Create Memory Maps for Targets

	Using Target Support Package Software with Real-Time Workshop Em
	Introduction
	To Use the Real-Time Workshop Embedded Coder Target File

	Targeting with DSP/BIOS Options
	Introducing DSP/BIOS
	DSP/BIOS and Targeting Your TI C6000 DSP
	Introduction
	DSP/BIOS Configuration File
	Memory Mapping
	Hardware Interrupt Vector Table
	Linker Command File

	Code Generation with DSP/BIOS
	Overview
	Generated Code Without and With DSP/BIOS
	Example — c6713dskwdnoisf.pjt code Generated Without DSP/BIOS
	Example — c6713dskwdnoisf.pjt Code Including DSP/BIOS

	Profiling Generated Code
	Overview
	Profiling Subsystems
	Details About Timing and Profiling
	Correcting Inaccurate Profile Information Due to Timing

	Profiling Multitasking Systems
	The Profiling Report
	Interrupts and Profiling
	Reading Your Profile Report
	Sample of a Profile Report
	Report Heading Information
	Report Subsections and Contents

	Definitions of Report Entries
	System name
	Number of Iterations Counted
	CPU Clock Speed
	Maximum Time Spent in This Subsystem per Interrupt
	Maximum Percent of Base Interval
	STS Objects

	Profiling Your Generated Code
	To Enable Profiling for Your Generated Code
	To Create Atomic Subsystems for Profiling
	To Build and Profile Your Generated Code

	Using DSP/BIOS with Your Target Application
	Enabling DSP/BIOS When You Generate Code

	Using the C62x and C64x DSP Libraries
	About the C62x and C64x DSP Libraries
	C62x DSP Library
	C64x DSP Library
	Supported Platforms
	Characteristics Common to C62x and C64x Library Blocks

	Fixed-Point Numbers
	Notation
	Signed Fixed-Point Numbers
	Q Format Notation
	Example — Q.15
	Example — Q1.30
	Example — Q-2.17
	Example — Q17.-2

	Building Models
	Overview
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Configuring Timing Parameters for CAN Blocks
	Setting Timing Parameters
	Accessing the Timing Parameters
	Determining Timing Parameter Values
	CAN Bit Timing Example
	References
	See Also

	Block Reference
	AVNET S3ADSP DM6437 (avnet_s3adsp_dm6437)
	C6416 DSK (c6416dsklib)
	C6455 EVM (c6455evmlib)
	C6713 DSK (c6713dsklib)
	C6747 EVM (c6747evmlib)
	CAN Message Handling Blocks (canmsglib)
	DM642 EVM (dm642evmlib)
	DM6437 EVM (dm6437evmlib)
	DM648 EVM (dm648evmlib)
	DSP/BIOS (dspbioslib)
	Host Communication (hostcommlib)
	C62x DSP Library (tic62dsplib)
	Conversions
	Filters
	Math and Matrices
	Transforms

	C64x DSP Library (tic64dsplib)
	Conversions
	Filters
	Math and Matrices
	Transforms

	Scheduling (c6000dspcorelib)
	Target Communication (targetcommlib)
	Target Preferences (c6000tgtpreflib)

	Blocks — Alphabetical List
	Data is input as

	Hardware Issues
	Configuring the D.signT DSK-91C111 to Use TCP/IP and UDP
	Requirements for the DM642 EVM
	Identifying Your DM642 EVM Board Version
	Installing Third-party Software
	Configuring the Target Preferences Block for Your DM642 EVM
	Configuring the DM642 EVM Video ADC Block

	Installing and Configuring the Avnet Board Support Library
	Preface
	Installing the Avnet Board Support Library
	Setting the MATLAB Environment
	For Spectrum Digital DM6437EVM Users
	Verifying Your Installation

	Continuing Issues with Target Support Package Software
	Setting the Clock Speed on the C6713 DSK
	Setting the PLL to Drive the CPU at 225 MHz
	On the DM642 EVM, ADC-DAC Loopback Does Not Display An RGB Image

	Simulink Stop Block Works Differently When Not Using DSP/BIOS Fe
	Installing Third-Party Target Support Packages
	DM642EVM Version 3 Board
	DM642EVM Version 1 & 2 Boards
	DM6437EVM
	C6455DSK
	C6727PADK

	Index

	tables
	Option Settings to Simulate the User DIP Switches on the C6416 D
	Output Values From The User DIP Switches on the C6416 DSK
	Option Settings to Simulate the User DIP Switches on the C6713 D
	Output Values From The User DIP Switches on the C6713 DSK

